

PhD Barbara Rossi

Optical Fiber Devices for Precision Medicine

Tutor: Prof. Antonello Cutolo

Cycle: XXXVIII Year: III

2

١.

3

My background

- M.Sc. In Biomedical Engineering 25th March 2022
- OptoPower Lab DIETI
- Tutor: prof. Antonello Cutolo
- PhD started and end dateds: 01/11/2022 31/10/2025
- Scholarship funded by UNINA
- Abroad Research: Technical University of Denmark
- Collaborations: the Optoelectronic Division, Engineering Department, University of Sannio, the CNOS center (Nanophotonics and Optoelectronics Centre for Human Health, BN, Italy), IIT(Italian Institute of Technology) of Lecce

teephD Barbara Rossi–YEP3 3

Summary of study activities

PhD	Courses	Seminars	Research	Tutoring/Supplementary
Year				Teaching
1 st	28	10.4	35	
2 nd	8	2.3	45	2.4*
3 rd	4	5.2	60	1*

PhD school:

*Tutorship Fisica I e Fisica II

- China-Italy Joint Laboratory on Advanced Manufacturing (CI-LAM);
- FIT4MEDROB International Seasonal School.

Main Attendend Courses:

- Optical Components and Circuits (MSc course) Prof. A. Capozzoli;
- Optics and Microwave Engineering (MSc course) Prof. A. Capozzoli;
 Numerical Matheda for Thomas A relation and Simulation A.
- Numerical Methods for Thermal Analysis, Modeling and Simulation: Application to Electronic Devices and Systems (Ad hoc course) – Dr. A.P. Catalano

tormation technology

Barbara Rossi–YEP3

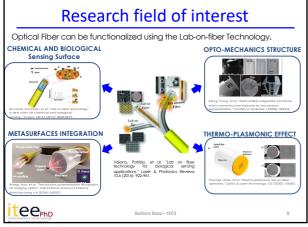
Research products 1/2

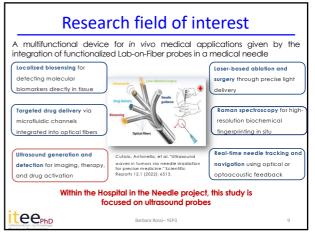
B. Rossi, M. Giaquinto, M. A. Cutolo, A. Cusano, A. Cutolo, "Advanced integrated optical devices for ultrasound diagnostics", Springer Nature, Proceedings of SIE 2023 - 54th Annual Meeting of the Italian Electronics Society, A Springer book series Lecture Notes in Electrical Engineering (Poster Presentation).

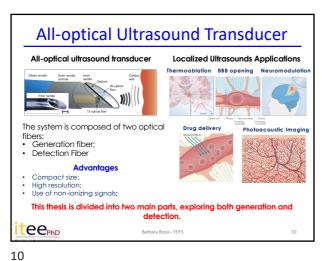
B. Rossi, M. Giaquinto, M. A. Cutolo, A. Cusano, "Advanced Integrated Optical Devices for Ultrasound Diagnostics," Progress in Electromagnetics Research Symposium (PIERS) 2024, Chengdu, China.

B. Rossi, M. A. Cutolo, G. Breglio, A. Cusano, M. Giaquinto, A. Cutolo, "Advanced Lab-on-Tip Devices for Ultrasound Diagnostic: A Numerical Investigation," International Conference of Photonics (ICOP 2024), Florence, Italy.

B. Rossi, M. Giaquinto (invited), M. A. Cutolo, A. Cusano, G. Breglio, "Optical Fiber Based Devices: From Biosensing to Ultrasound Applications," 2025 Photonics & Electromagnetics Research Symposium Abstracts, Abu Dhabi, UAE.


1


Barbara Rossi-YEP3 5


Research field of interest The necessity to develop novel personalized techniques for patient treatments has gradually become a key factor in the optimization of a wide range of clinical applications, particularly in oncology and neuroscience. To this aim, the 'precision medicine' is following two main strategies: SPECIFIC CLINICAL TREATMENTS PERSONALIZED FOR EACH PATIENT COMPACT NON-INVASIVE DEVICES FOR LOCALIZED DIAGNOSTICS AND THERAPY Barbara Rossi-YEP3 7

6

8 9

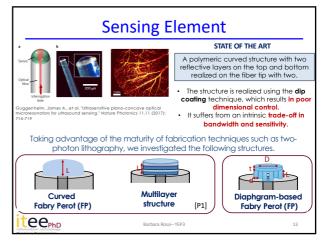
PhD thesis overview

□ Problem

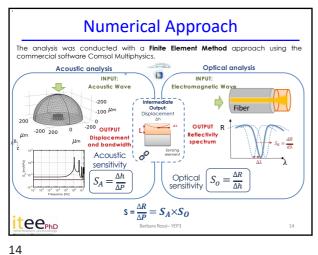
Existing fiber-optic ultrasound probes are promising, but their full potential remains largely unexplored.

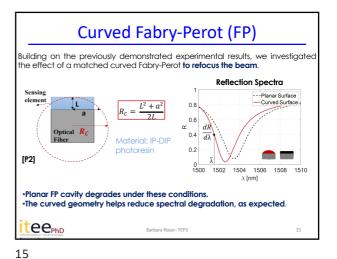
□ Objective

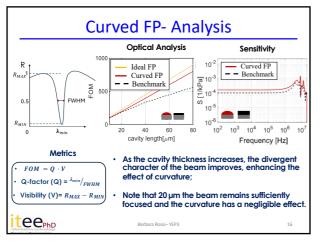
Explore and exploit modern fabrication techniques, novel materials, and design strategies to engineer high-performance all-optical ultrasound probes.

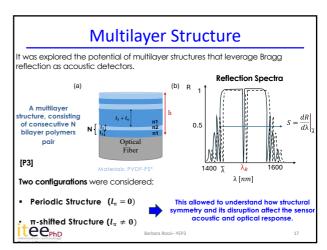

■ Methodology

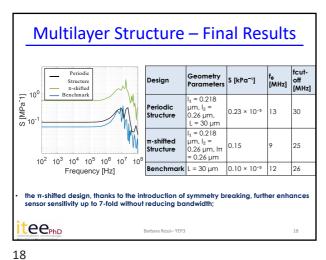
11

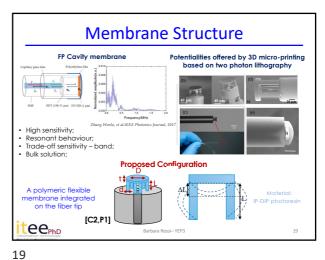

- MATLAB simulations for preliminary modeling
- COMSOL Multiphysics simulations for optical, acoustic, and mechanical analysis

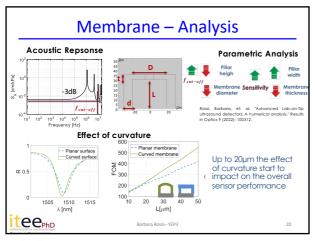


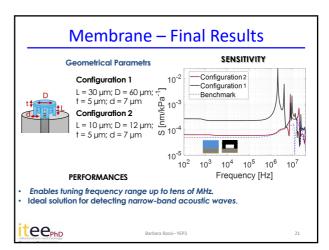

Optical fiber Ultrasound detectors The sensing element realized on the optical fiber tip essentially works as ar WORKING PRINCIPLE Incident coustic (P) Example of detection set up Tunable Laser ee_{PhD}

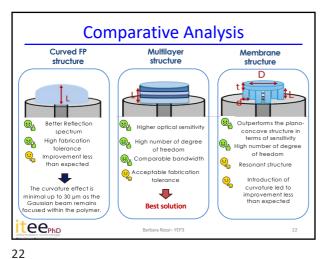


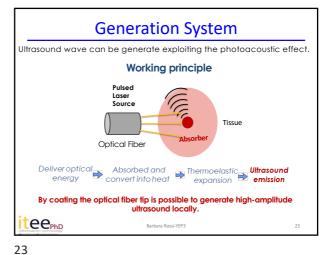

12 13

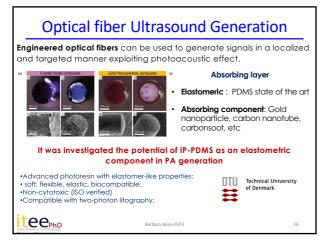


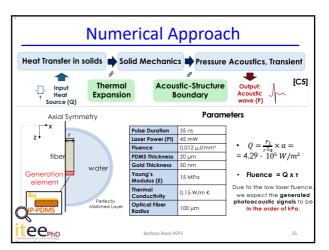


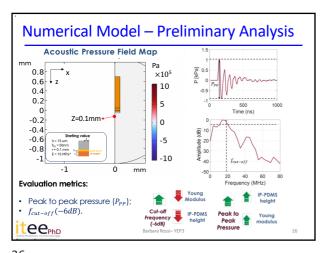


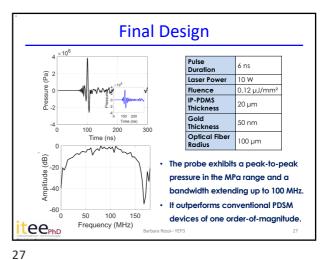












Advanced Material Characterization IP-PDMS has potential applications also as fiber-based acoustic sensors. However, the optical behavior of these materials in the infrared (IR) and near-infrared (NIR) ranges remains largely uncharacterized. Interior to account the second of the

Research results and Future Perspectives This thesis focuses on the investigation of all-optical ultrasound probes exploiting novel materials and fiber-based technologies for miniaturized and non-invasive sensing. • Analysis of fiber-based detector configurations, evaluating advantages and limitations related to fabrication method, material, and geometry; • Investigation of fiber-optic ultrasound generators using novel material IP-PDMS; • Optical characterization in the NIR region of IP-PMDS; □ Design and realization of both generation and detection elements; □ Design and realization of advanced architectures through Lab-on-Fiber technology, enabling enhanced functionality in compact systems.

28 29