

Enea Vincenzo Napolitano Artificial Intelligence techniques for Smart Environments

Tutor: Prof. Elio Masciari co-Tutor: Prof. Nicola Mazzocca

Cycle: XXXVIII Year: Second

My background

- MSc degree in Data Science @ Federico II
- DIETI Research group/laboratory: PICUSlab
- PhD start date: January 1, 2023
- Scholarship type: RESTART
- Period abroad: May 1, 2024 October 31, 2024 @ BDS LAB -University of Houston, Houston (USA)

Summary of study activities

1 Ad hoc course:

- Strategic Orientation for STEM Research & Writing
- 2 Seminars
- Conferences:
 - Medes 2024, the 16th international conference on management of digital ecosystems Naples November 18 - 20, 2024
 - Medi 2024, 13th International Conference on Model and Data Engineering Naples November 18 20, 2024
 - DEMAI 2024, 2nd Workshop on Data Engineering and Modeling for AI @ IEEE BigData24, Washington, USA, December 17, 2024 (online)
- Award:
 - Best Reviewer Award MEDI 2024
- Period abroad:
 - May 1, 2024 October 31, 2024 @ BDS LAB University of Houston, Houston (USA)

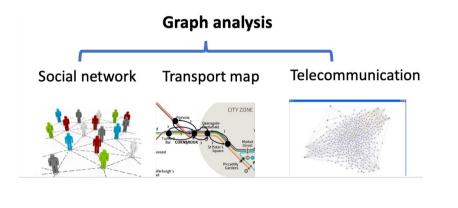
Research area

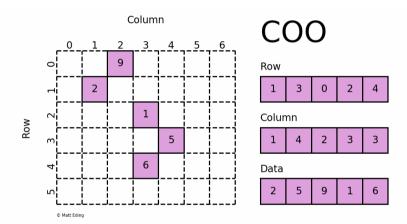
Artificial Intelligence for Smart Environments

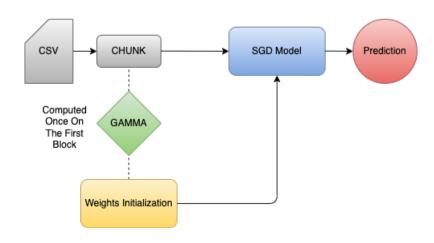
<u>Objective</u>: To apply AI techniques to optimize systems and processes in smart environments, ensuring sustainability and efficiency.

Key Areas of Focus:

- Sustainability: Developing metrics and tools to assess and reduce the environmental impact of AI applications.
- Optimization: Enhancing computational efficiency in data structures, sparse matrices, and graph-based algorithms.
- Applications: Leveraging AI in transportation, healthcare, and public administration for smarter resource utilization.

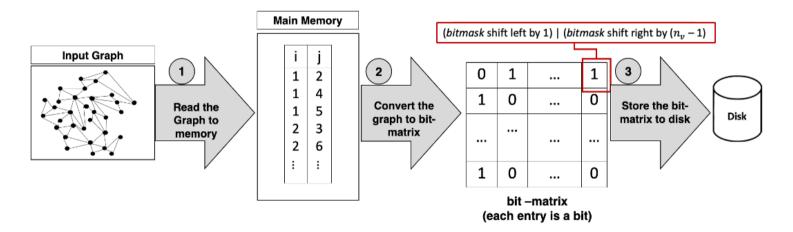

Research results: Green environments


- Quantifying Al's Environmental Impact
 - Developed a metric to estimate CO₂ emissions from Al tasks.
- Smart Mobility
 - Sistematic Mapping Study on Load Passenger
 Prediction of Public Transportation



Research results: Computational Efficiency (I)

Sparse Matrix Multiplication



Research results: Computational Efficiency (II)

Adjacency Matrix Computation


```
Input: E
   Output: E^*
 1 for i \leftarrow 2 to n do
       for j \leftarrow 1 to i-1 do
            if E[i,j]=1 then
                \operatorname{set} E[i, *] = E[i, *] \vee E[j, *]
 6
       end
 7 end
 8 for i \leftarrow 1 to n-1 do
       for j \leftarrow i + 1 to n do
            if E[i,j] = 1 then
                set E[i, *] = E[i, *] \vee E[j, *]
11
12
13
       end
14 end
```

Algorithm 1: Warren's Algorithm

Research products

[P1]	di Torrepadula, F. R., Napolitano, E. V., Di Martino, S., & Mazzocca, N. (2024). Machine Learning for public transportation demand prediction: A Systematic Literature Review. <i>Engineering Applications of Artificial Intelligence</i> , 137, 109166
[P2]	Masciari, Elio, and Enea Vincenzo Napolitano . "The Environmental Cost of High Performance Computing System Simulation." PDP 2024.
[P3]	Indrio, F., Masciari, E., Marchese, F., Rinaldi, M., Maffei, G., Napolitano, E. V., & Aceti, A. (2024). "Infantile Predictors of Functional Gastrointestinal Disorders: A Machine Learning Approach to Risk Assessment". SEBD 2024.
[P4]	Fioretto, S., Masciari, E., & Napolitano, E. V . «Machine Learning for KPI Development in Public Administration». DATA 2024.
[P5]	Bassi, N., & Napolitano, E. V . "Drive BELT: A Strategic Decision-Making Tool for Optimizing Naval and Rail Freight Logistics". <i>NFMCP 2024</i> .
[P6]	Benfenati, D., Capuozzo, S., De Filippis, G. M., De Simone, A., Gravina, M., Marassi, L., Napolitano, E.V., & Sansone, C. (2024). "Al in Medicine: Activities of the CINI-AIIS Lab at University of Naples Federico II".

information technology electrical engineering

Research products (II)

[A1]	Napolitano, E. V., Masciari, E., Ordonez, C. (2024) Integrating Flow and Structure in Diagrams for Data Science, DEMAI 2024, 2nd
	Workshop on Data Engineering and Modeling for AI @ IEEE BigData24
[A2]	Masciari, Elio, and Enea Vincenzo Napolitano.
	"Environmental Sustainability of AI: Estimating CO2e Emissions Across Cloud, Edge, and Fog Paradigms", WISE 2024
	Masciari, Elio, and Enea Vincenzo Napolitano.
[A3]	"Sustainability and High Performance Computing", IIWAS 2024
	Masciari, Elio, and Enea Vincenzo Napolitano .
[S1]	"An Effective Measure for Evaluating the Environmental Impact of AI Tasks", Information Sciences
	Masciari, Elio, and Enea Vincenzo Napolitano. "Optimizing Transitive Closure
[S2]	Computation for High Performance Computing." PDP 2025
	Conza, Maria Luisa, Fioretto, Simona, Masciari, Elio and Enea Vincenzo Napolitano
[S3]	"Enhancing Employee Health Through an Experimental Diet: Insights from Machine Learning Analysis" <i>PDP 2025</i>
ita	

information technology electrical engineering

Future Work

Deepening Computational Sustainability:

- Refine the CO₂ emission estimation metric to include additional factors, such as Lifecycle HW impact.
- Explore real-world case studies to validate and expand the metric's applicability.

Algorithm Development:

- Investigate further optimizations for sparse matrix operations and graphbased algorithms
- Apply these optimizations to specific use cases in smart environments, such as urban planning and energy management.
- Collaborate with interdisciplinary teams to integrate AI solutions into diverse sectors.

THANK YOU.

