

PhD student: Vincenzo Miranda High Permittivity Material for RF field control in High Field MRI

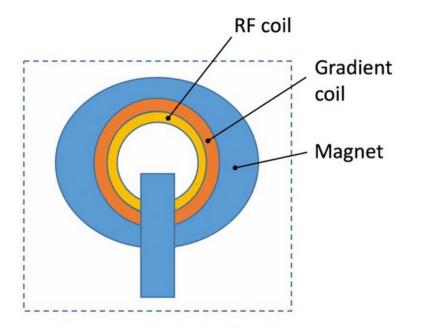
Tutor: Giuseppe Ruello

Cycle: XXXVIII

Year: 2023/2024

Candidate's information

- **MSc degree:** Biomedical Engineering, Medical Devices
- **Research group/laboratory:** Numerical Antennas Laboratory, DIETI
- **PhD start-end:** 01/11/2022 end 01/11/2025
- Scholarship type: PNRR DM 351 Public Administration
- Periods abroad:
 - 23/06/2024 –23/09/2024 Public Administration Pascale Foundation of Naples
 - 30/10/2024 30/03/2025 NYU Langone Radiology Department, 660
 First Avenue, New York.

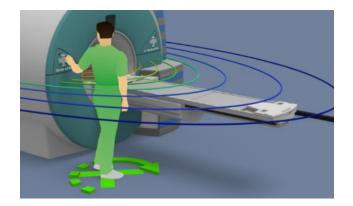

Summary of study activities

Ad hoc PhD courses	<u>Seminars</u>	Conference/Workshop
Radiofrequency ablations in liver surgery: a multidisciplinary point of view	CBI Science Day NYU	BioEM 2024 conference (Bioelectromagnetic), Chania, Greece
Innovation and Entrepreneurship	Rewire the brain: the potential of neuroplasticity	Federico II New York "800 years of culture and innovation", Cornell University, New York
Matrix Analysis for Signal Processing with MATLAB Examples	Myelin Mapping in the brain's white matter using a new data- driven analysis	
Numerical methods for thermal analysis, modelind, and simulation	Some aspects of virtual medicine and human space science research	
official type B tutoring activities	MRI Electromagnetic compatibility and optimization	

Research area(s)

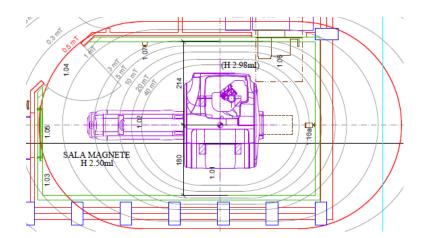
Electromagnetic efficiency and safety in high field magnetic resonance imaging ($\geq 3T$)

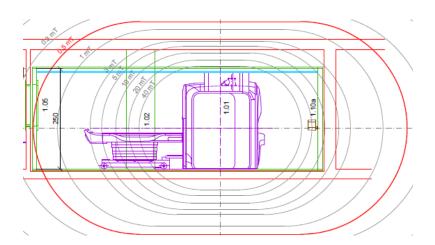
• Signal to noise ratio proportional to the static magnetic field


 $SNR \propto B_0$

• Resonance Larmor Frequency for RF coils

 $f_0 = \mathbf{\gamma} \mathbf{B}_0$


Foundation Pascale of Naples



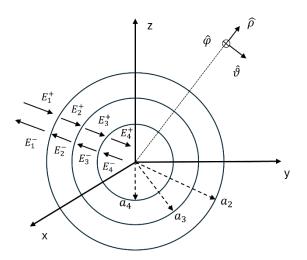
 Assess risks associated with worker exposure to gradients field due to movement in the patient room

$$|E| = \frac{r}{2} \left(\left| \frac{dB}{ds} \right| * v \right)$$

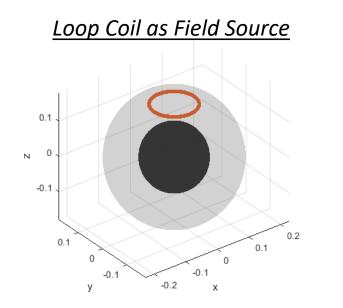
SIEMENS Healthineers

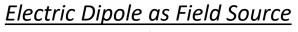
PhD thesis overview

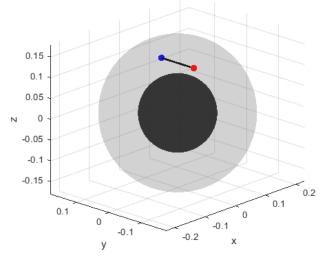
- Problem statement: As static magnetic field strength increases, RF field inhomogeneities grow due to higher Larmor frequency, resulting in artifacts on medical images.
- **Objective:** Control the RF field through high permittivity materials (HPMs) and provide a physical insight into their design


Methodology:

- > Analytical approach to understand the effect of HPMs on RF field distribution
- > Numerical simulations to validate and support analytical data
- > Experimental data obtained from the exposure of MRI phantoms employing HPMs

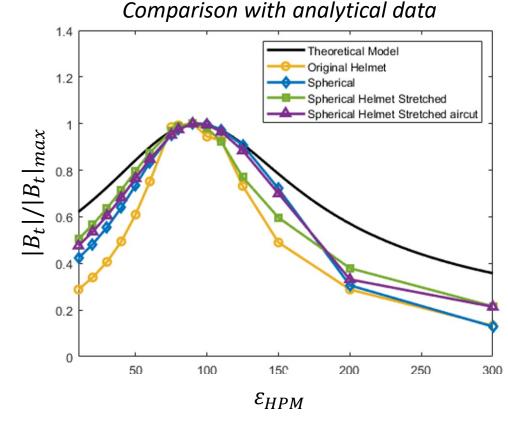

Research results (1)


Analytical Scattering Model



$$\boldsymbol{E}_{l}(r) = \sum_{n=1}^{\infty} \sum_{m=-n}^{n} E_{lnm}^{+} \boldsymbol{M}_{nm}^{(3)} + E_{lnm}^{-} \boldsymbol{M}_{nm}^{(4)}$$

$$\boldsymbol{H}_{l}(r) = \frac{k_{l}}{i\omega\mu_{l}} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} E_{lnm}^{+} \boldsymbol{N}_{nm}^{(3)} + E_{lnm}^{-} \boldsymbol{N}_{nm}^{(4)}$$

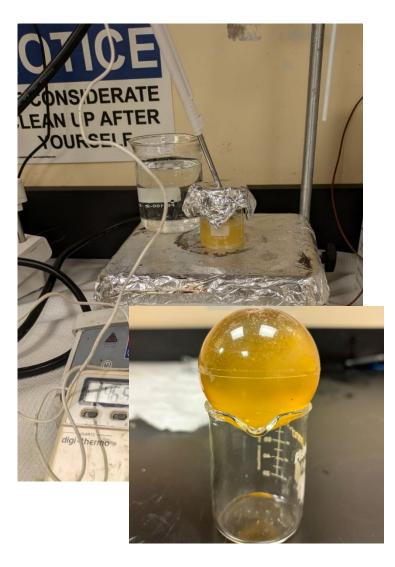

Vincenzo Miranda

Research results (2)

Numerical Analysis

Numerical Simulation Setup

dtd



Research results (3)

Experimental Results

Research products

	Vincenzo Miranda, Giuseppe Ruello, Riccardo Lattanzi A Theoretical Framework to Investigate the Effect of High Permittivity Materials in Magnetic		
[P1]	Resonance Imaging using Anatomy-Mimicking Cylinders		
	Magnetic Resonance in Medicine		
	DOI: <u>https://doi.org/10.1002/mrm.30063</u>		
	Vincenzo Miranda, Daniele Riccio, Giuseppe Ruello, Riccardo Lattanzi		
[P2]	A Novel Electromagnetic Method to Interpret Scattering Suppression from Spheres		
	2023 Seventeenth International Congress on Artificial Materials for Novel Wave		
	DOI: <u>10.1109/Metamaterials58257.2023.10289295</u>		
[P3]	Vincenzo Miranda, Daniele Riccio, Giuseppe Ruello, Giuseppe Carluccio, Christoper Collins, Riccardo Lattanzi		
	An Analytical Solution to Investigate the Impact of an Insulating Layer with High Permittivity		
	Materials in Magnetic Resonance Imaging Applications		
	2023 International Conference on Electromagnetics in Advanced Applications (ICEAA)		
	DOI: <u>10.1109/ICEAA57318.2023.10297874</u>		
[P4]	Vincenzo Miranda, Giuseppe Carluccio, Giuseppe Ruello, Riccardo Lattanzi, Daniele Riccio		
	Effect of an air layer on the design of high permittivity material helmets for 7 tesla magnetic		
	resonance imaging		
	IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology		
	Status: Submitted		

Thanks for the attenction!

