

Vittorio Di Marzo

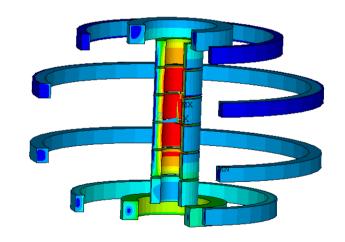
Electromagnetic and Mechanical Design of the Central Solenoid in Tokamak Devices: from LTS to HTS configurations

Tutor: Prof. Roberto Ambrosino

Cycle: XXXVIII Year: 2025

Candidate's information

- MSc degree in Mechanical Engineering for Design and Production (July, 2022)
- Research group/laboratory: DIETI Plasma Control Group
- PhD start date: 01/11/2022
- Scholarship type: PNRR DM 352
- Partner company: Eni S.p.A.
- Periods abroad: 6 months at Fusion For Energy (Barcellona)
- Periods in company: 6 months at Eni S.p.A. (Venice, Italy)


Summary of study activities

- Academic courses: Courses in the field of Automatic Control, Modeling and Simulation, System Theory, Plasma Physics and Fusion, and Modeling and Dynamics of Fields.
- Specialized schools: National Doctoral School of Electrical Engineering (Gasparini) and in the 4th International School on Numerical Modelling for Applied Superconductivity (Fusion for Energy, Barcelona).
- Seminars: Attended >20 international seminars on plasma physics, control systems, and computational modeling.
- Research and training periods: Fusion for Energy (Barcelona, 6 months): research on HTS design for DTT Central Solenoid; Eni S.p.A. (Venice, 6 months): industrial study on LTS/HTS superconducting magnets.

Research area:

- Research field: Controlled thermonuclear fusion reactors (devices aiming to reproduce on Earth the energy of the Sun, also known as "Tokamaks").
- Main problems tackled:
 - plasma control and power exhaust strategies in large tokamaks (DEMO, VNS, DTT);
 - design of superconducting magnets for nuclear fusion applications.

Research results

- Design and testing of alternative power exhaust strategies (i.e. plasma wobbling);
- Electromagnetic design on new nuclear fusion facilities (i.e. Volumetric Neutron Source - VNS);
- Integrated design methodology for electromagnetic and mechanical modeling of superconducting magnets;

Research products

	DAI ' MD'M A			
	R. Ambrosino, V. Di Marzo et al.			
[J1]	DEMO in-vessel equatorial coils for power-exhaust and fast plasma control,			
	Fusion Engineering and Design,			
	vol.197, 2023, DOI: 10.1016/j.fusengdes.2023.114029.			
[J2]	F. Romanelli, V. Di Marzo et al.			
	Divertor Tokamak Test facility project: status of design and implementation,			
	Nuclear Fusion,			
	vol. 64, 2024, DOI: 10.1088/1741-4326/ad5740.			
[J3]	E. Acampora, V. Di Marzo et al.			
	Scenario feasibility and plasma controllability for Volumetric Neutron Source (VNS),			
	Fusion Engineering and Design,			
	vol.217, 2025, DOI: 10.1016/j.fusengdes.2025.115053.			
	V. Di Marzo et al.			
[J4]	Electromagnetic and Mechanical analyses of an explorative HTS-based Central Solenoid for the			
	DTT Tokamak,			
	IEEE Transactions on Applied Superconductivity, Special Issue on MT-29, paper accepted,			
	2025.			
[C1]	F. Maviglia, V. Di Marzo et al.			
	Studies on EU-DEMO In-Vessel Coils requirements and conceptual design for axisymmetric			
	plasma control,			
	49th EPS Conference on Plasma Physics,			
	Bordeaux, France, 2023, DOI: 21.11116/0000-000E-2835-A.			

Research products

	E. Acampora, V. Di Marzo et al.
[C2]	Scenario feasibility and plasma controllability for Volumetric Neutron Source (VNS),
	33rd Symposium on Fusion Technology,
	Dublin, Ireland, Sept. 2024, DOI: 21.11116/0000-000F-F2F0-0.
[C3]	V. Di Marzo et al.
	Electromagnetic and Mechanical analyses of an explorative HTS-based Central Solenoid for the
	DTT Tokamak,
	29th Magnet Technology Conference,
	Boston, MA (USA), July 2025, poster session.

Problem:

 Tokamaks represent a possible solution to get energy from nuclear fusion of particles in the state of «plasma».

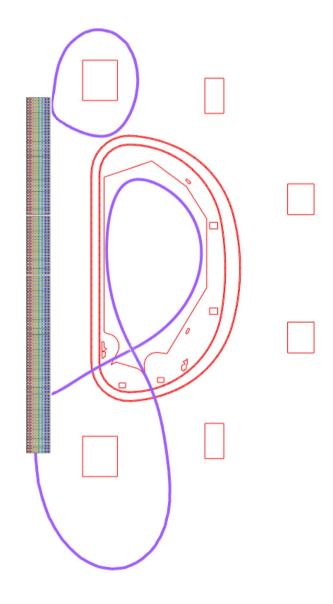
- To realize this we need:
 - Extreme temperatures (both high and low).
 - High currents;
 - High magnetic fields.

Tokamak's components are subjected to very demanding conditions

A very critical component is the **Central Solenoid (CS)** (there are a lot of problems, in particular):

High currents + high fields => use of superconductors & high mechanical stresses

Fast time-varying magnetic field (in some instants) => high AC losses


Core question:

How can we design an optimal and mechanically sound Central Solenoid while preserving electromagnetic performance?

Objectives:

- To find optimal configurations
 (geometry, number of conductors,
 layout ...) of Central Solenoids due to
 constraints (also including new
 innovative materials as High
 Temperature Superconductors HTS);
- Identify the mechanical stress field and develop static and fatigue studies;
- Develop with the found CS geometry a simulation of a plasma scenario (that is a plasma discharge);
- Have a first estimation of AC losses;

Methodology:

- Analysis of High and Low Temperature Superconductors properties;
- Identification of an optimal, feasible and robust CS configuration in order to maximize the poloidal magnetic flux in a tokamak (implemented in MATLAB);
- Preliminary validation of the optimal solution through electromagnetic and mechanical simulations in critical snapshots of the plasma scenario (implemented in ANSYS APDL);
- Development of the electromagnetic plasma scenario;
- First instance estimation of the AC losses in the conductors.

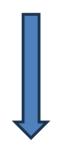
 Considering the DTT Tokamak, the Central Solenoid is still in its predesign phase (respect to other components).

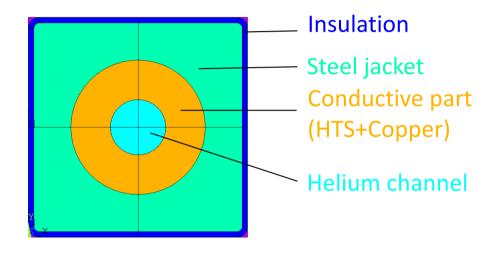
Problem of the previous CS configuration:

Full LTS CS with complex winding pack (problems in EM performances, mechanical stress, thermofluidynamics ...)

Analyses of new CS configurations:

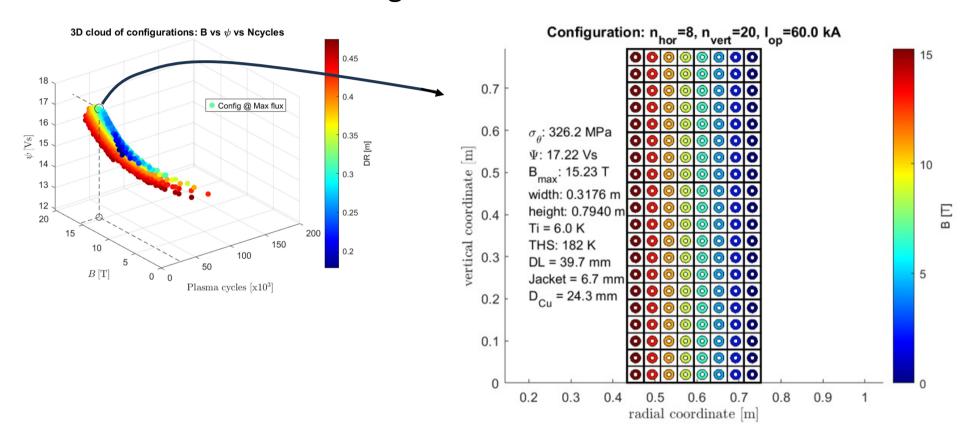
- Full HTS CS with a simpler winding pack (exploratory study);
- LTS CS with an HTS insert (current reference geometry).


(Some) advantages of conductors with HTS tapes:

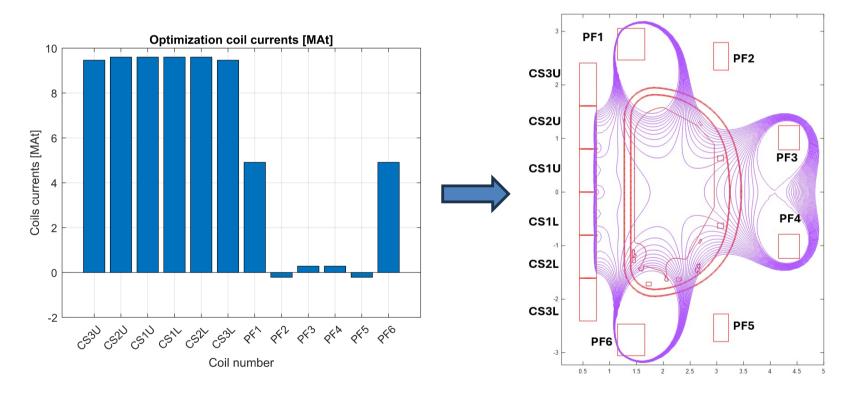

- Higher current density wrt LTS at higher fields and temperatures;
- Higher structural rigidity.

First exploratory study – full HTS CS:

Conductor architecture:

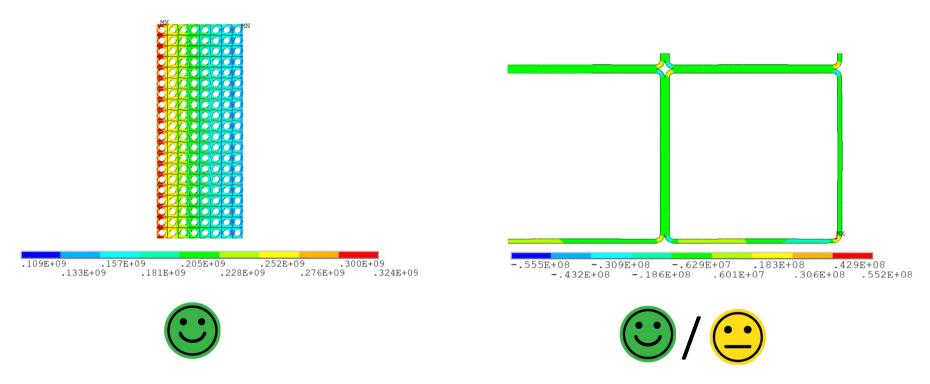


- Search of an optimal configuration:
 - Lots of possible combinations have been examined;
 - The optimal one is the one that survives to at least 25,000 operative cycles that maximizes the magnetic flux.



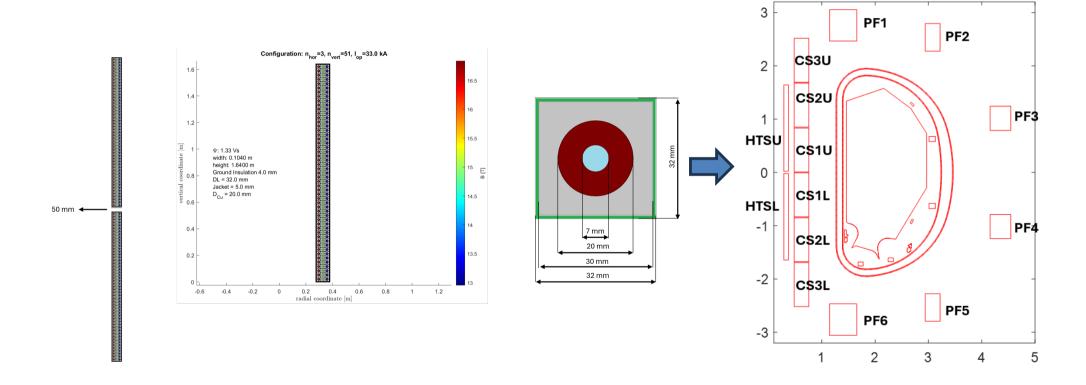
• Cloud of examined configurations:

 Identification of an optimal current set capable of maximizing the flux at the beginning of the discharge:

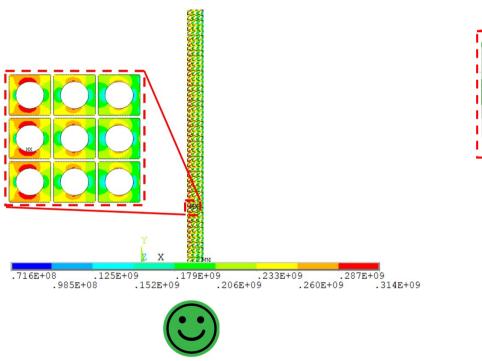


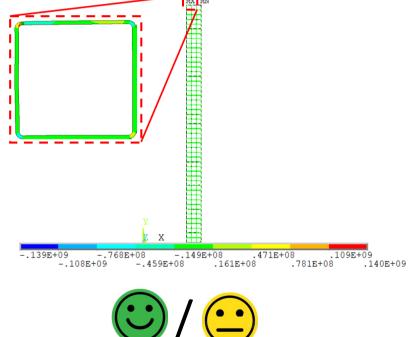
Vittorio Di Marzo

15

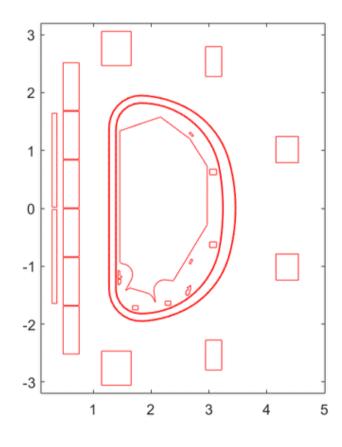

• EM and mechanical analyses + assessment of conductor's jacket and insulation:

• The overall plasma scenario has not been developed because not necessary (not a reference configuration).

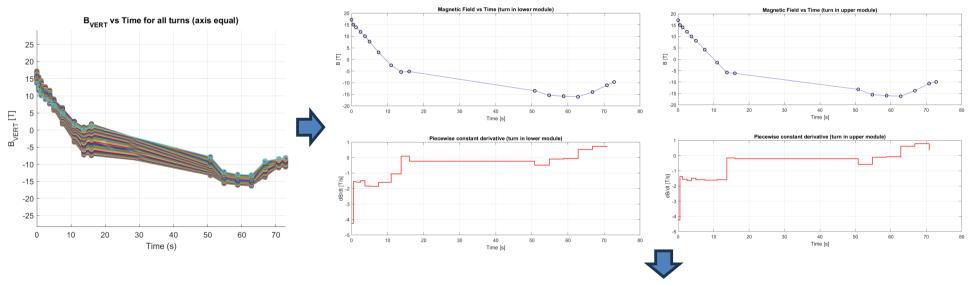



Second study – Current configuration with LTS CS and HTS insert:

• EM and mechanical analyses + assessment of conductor's jacket and insulation:



- Development of the overall plasma scenario:
 - Starting from previous current calculations, a new optimal current set has been developed for the overall plasma scenario, allowing to see the current in each superconducting conductor of the HTS insert.



AC losses estimation.

- AC losses estimation:
 - Identification of a conductor subjected to very demanding time-varying magnetic field conditions;
 - Analytical estimation of the AC losses (hysteresis + coupling).

Turn in:	E _{hyst} [kJ/m]	Ecoupl [kJ/m]
Upper module	6.02	2.99
Lower module	6.08	2.95

Future works:

- Methodology:
- Improvement of the proposed methodology considering the following aspects:
 - fatigue analysis of the steel jacket of the HTS insert;
 - comprehensive mechanical analyses of the overall system;
 - further analyses on the conductors' insulation;
 - development of more accurate models for the evaluation of AC losses.
- Testing:
- Final validation of the proposed solution for DTT (as this predesign phase is expected to be completed by mid next year).

Thank you for your kind attention

