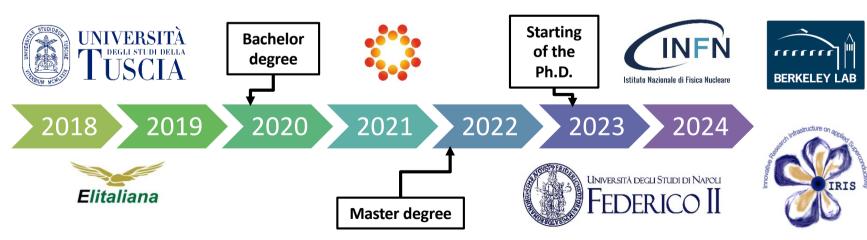


Davide Cuneo PNRR IRIS (Innovative Research Infrastructure on applied Superconductivity)

Tutor: Prof. Pasquale Arpaia

Cycle: Year: 2024 XXXVIII

My background


Davide Cuneo

16-09-1998, Grosseto (GR), Italy.

Email: davide.cuneo@unina.it

DIETI department, University of Naples Federico II, IMPALab.

- ☐ **Ph.D. student** in «Information Technology and Electrical Engineering (ITEE)» at University of Naples Federico II (2023 on going).
- ☐ Supervisor: **Prof. P. Arpaia, PNRR fellowship.**
- ☐ Ph.D. Start Date: January 2023
- ☐ Period Abroad: Lawrence Berkeley National Laboratory (2024)

Research field of interest

• IRIS (Innovative Research Infrastructure on applied Superconductivity:

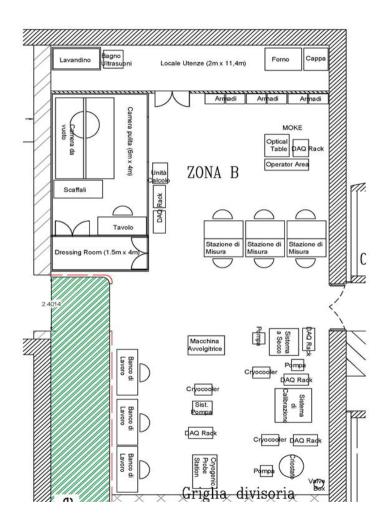
Instrumentation and measurement for High-Temperature Superconductors (HTS) cables and magnets.

Summary of study activities

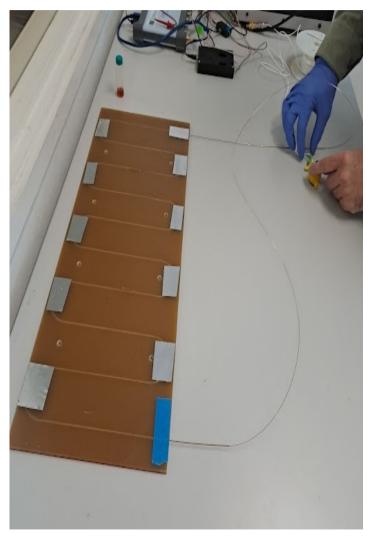
Ad hoc PhD courses / schools:

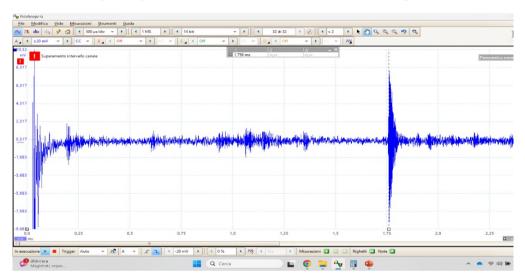
- ✓ Modelli numerici per I campi, Prof. Massimiliano D'Aquino;
- ✓ U.S. Particle Accelerator School 2024 (USPAS2024): "Magnetic Systems for Accelerators, Detectors and Insertion Device's", Rohnert Park, California, 22-26 July, 2024;
- ✓ U.S. Particle Accelerator School 2025 (USPAS2025): Superconducting Accelerator magnets/Machine Learning for particle Accelerators, Knoxville, Tennesee, 27, January – 7, February: scholarship awarded;

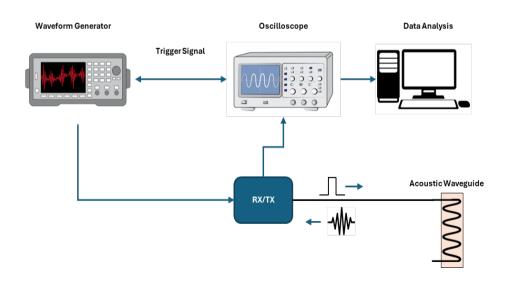
☐ Conferences / events attended:


✓ Conference: Applied Superconductivity conference 2024 (ASC2024), Salt Lake City, Utah, 1-6 September, 2024.

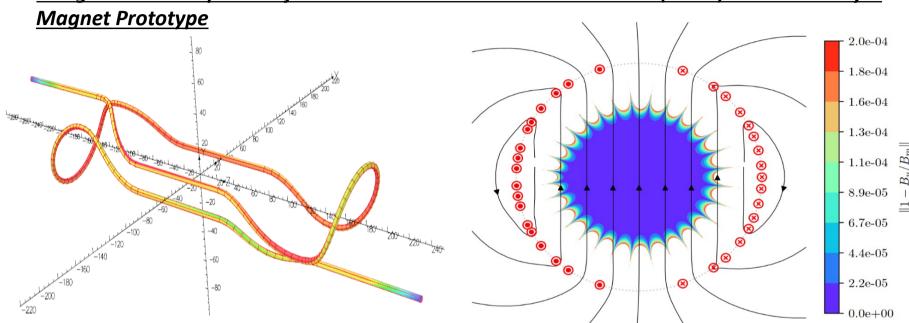
An advanced instrumentation lab for superconducting cables and magnets

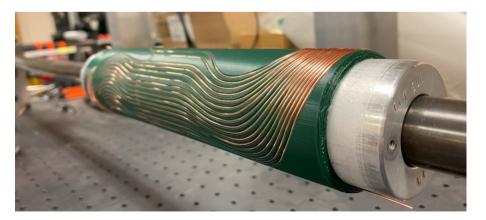




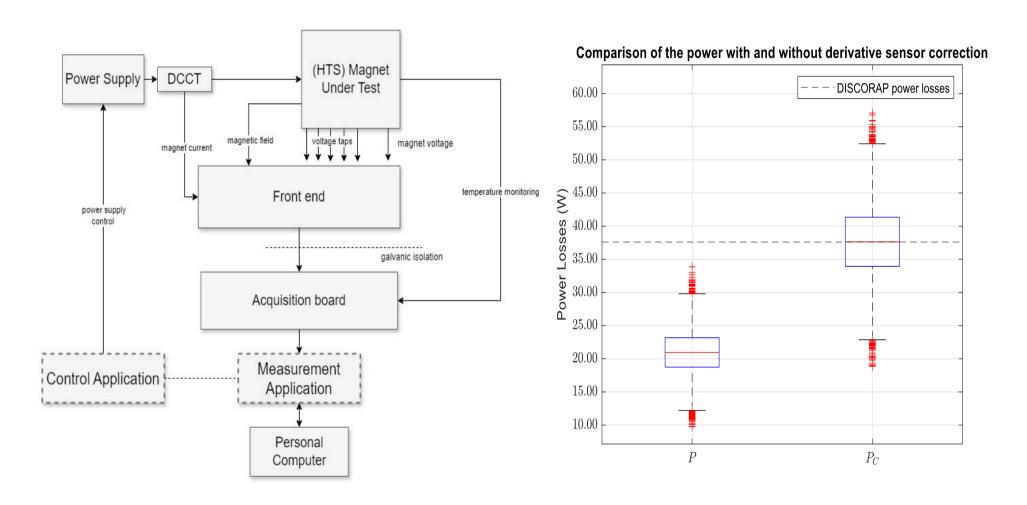


□ Development of an acoustic waveguide sensor for quench detection on HTS magnets





☐ <u>Design and development of a 3-turn HTS Conductor on Round core (CORC)-based Uni-Layer</u>



☐ <u>Design of an AC Losses measurement system for superconducting magnets.</u>

Research results

☐ Research and development results

- Acoustic waveguide sensor developed and ready to be installed in the final magnet;
- Development of the mandrel geometry for the 3-turn CORC based Uni-Layer magnet prototype achieved;
- Experimental campaigns conducted on a copper mock-up magnet both at room and 77 K;
- Experimental campaign on the conductor to determine the critical current conducted and ready to install the conductor on the mandrel designed;
- Design of the AC Losses test bench and Monte Carlo simulations performed
- Scientific contribution on MDPI Instruments ready to be submitted on the design of the measurement system for AC Losses

☐ Next year planned activities

- Machine Learning on data acquired from particle accelerator magnets;
- Reproduction of the acoustic sensor in the new IRIS Laboratory
- Writing of scientific contributions (3 planned)
- Writing of the Ph.D. thesis

Research products

[P1]	Pasquale Arpaia, Davide Cuneo, Antonio Esposito, Antonio Gilardi, and Pedro M. Ramos, An Overview on Quench Detection Techniques for High-Temperature Superconducting Cables and Magnets, IEEE Instrumentation & Measurement Magazine, 2024
[P2]	Pasquale Arpaia, Davide Cuneo, Ernesto De Matteis, Antonio Esposito and Pedro Ramos, Physical design and uncertainty analysis of a measuring system for AC power losses in
	superconducting magnets, MDPI Instruments 2025
[P3]	Awarded with a prestigious scholarship for the next U.S. Particle Accelerator School in Knoxville, Tennesee for the period January 27 - February 7, 2025.

Davide Cuneo PNRR IRIS (Innovative Research Infrastructure on applied Superconductivity)

Tutor: Prof. Pasquale Arpaia

Cycle: Year: 2024 XXXVIII

