

PhD Riccardo Corvi Synthetic Video Detection

Tutor: Luisa Verdoliva

Cycle: XXXVIII

Year: Second

My background

- MSc degree in Computer Engineering Università degli Studi di Napoli Federico II
- **Research group:** GRIP (Image Processing Research Group)
- PhD start date: 01/11/2022
- Scholarship type: UNINA DII, DISCOVER project, funded by DARPA under the SEMAFOR program
- Part-Time internship: 📀 **NVIDIA**. 11/03/2024 11/03/2025

Research field of interest

- Multimedia Forensics:
 - Development of techniques for the forensic analysis of images, audios and videos
- Synthetic Video Detection:
 - Identify if a video is AI generated or not

Synthetic videos downloaded from Social media (Left: Twitter, Right: Reddit)

Summary of study activities

	Courses	Seminars	Research	Tutorship
Total	13	5.6	38.6	0
Expected	10 - 20	5 - 10	30 - 45	0-1.6

State-of-the-art analysis in synthetic image detection and attribution

• PhD courses:

"Strategic Orientation for STEM Research & Writing" (Dr. Chie Shin Fraser) "Innovation and Entrepreneurship" (Prof. Pierluigi Rippa)

• Summer schools:

2024 IEEE-EURASIP Summer School on Signal Processing (S3P-2024) "Understanding and modeling the world around us" Capri, Italy, from 23/09/2024 to 27/09/2024

• Conference:

IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, USA, from 16/06/2023 to 20/06/2023

Research activity: Overview

- Problem
 - Easy access to generative AI allows to easily spread disinformation over the web
 - The advent of new types of synthetic generators has led to new ways to spread fake news
- Objective
 - Analyze the **artifacts** present in synthetic videos to gain insight into the most discriminative features
 - Develop a synthetic video detector that can generalize across different AI-based models

Research activity: Dataset creation

- We created a dataset of synthetic videos generated with 4 text-to-video generators
- We used captions of the real videos from the Panda70M dataset. Real and the synthetic data have the same content

Synthetic video

Caption: A woman wearing a blue shirt is interviewed by a news reporter

Riccardo Corvi

Research activity: Analysis

 We extracted artifacts in the spatial and frequency domain by computing the power spectra of noise residuals aggregated though the time domain

Research activity: Analysis

- Such artifacts can be very different based on the type of generator
- It is difficult then that one detector can generalize well to all the possible generators without re-training

Research activity: Analysis

- Another major issue comes from perturbations commonly applied when uploading on social networks
- Compression reduces the strength of the artifacts and introduces peaks caused by the coding process

After compression

Riccardo Corvi

Research activity: Methodology

- Our approach: rely on high-level cues, which are less affected by post-processing operations
- We leverage 4D representations from a monocular video using 3D Gaussians

Research activity: Methodology

- We can observe inconsistencies in the reconstruction of the synthetic video
- The rock, despite being static in the synthetic video, morphs and changes shape in the reconstruction

Research activity: Methodology

- Real videos are correctly reconstructed
- The tracked fishes are well reconstructed, even in their more complex movements

Research products

[P1]	Conference Paper
	G. Zingarini, D. Cozzolino, R. Corvi , G. Poggi, L. Verdoliva,
	"M3Dsynth: A dataset of medical 3D images with AI-generated local manipulations",
	IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
	Seul, June 2024
[P2]	Workshop Paper
	D. Cozzolino, G. Poggi, R. Corvi , M. Nießner, L. Verdoliva
	"Raising the Bar of AI-generated Image Detection with CLIP",
	IEEE Workshop on Media Forensics at CVPR,
	Seattle, June 2024
[P3]	Journal Paper
	D. Tariang, R. Corvi , D. Cozzolino, G. Poggi, K. Nagano, L. Verdoliva,
	"Synthetic Image Verification in the Era of Generative Artificial Intelligence: What Works and What
	Isn't There yet"
	IEEE Security & Privacy, May-June 2024

Next Year

- Carry out a large-scale quantitative analysis on the semantic clues related to 4D reconstruction
- Analyze the performance when videos are compressed/resampled
- Compare with state-of-the-art synthetic video detection approaches

Thank you for the attention!

