

Giovanni Maria Capuano Edge AI for Autonomous Spacecraft: Enabling Onboard Intelligence with FPGA Acceleration

Tutor: Prof. Strollo co-Tutor: Prof. Petra

Cycle: XXXVIII Year: 3

1

Candidate's information

- MSc degree in Electronic Engineering @DIETI Federico II
- DIETI Research group/laboratory: VLSI Group
- PhD start date: 01/11/2022 end date: 31/10/2025
- Scholarship type: PNRR DM 352
- Partner company: Techno System Development (TSD-Space)
- · Periods in company: 12 Months
- Abroad Research Institution: The European Space Research and Technology Centre (ESTEC) of ESA (Noordwijk, Netherlands)
- · Period abroad: 6 Months

Giovanni Maria Capuano – YEP3

Summary of study activities

- > AI-based Object Detection (OD) on optical satellite imagery
- > AI-based Super-Resolution (SR) on optical satellite imagery
- > Al-based Vision-based Satellite Pose Estimation
- > Al-based Satellite Jitter Detection for EO imagery quality enhancement
- > FPGA-based HW acceleration of Deep Learning algorithms
- > FPGA-based Ethernet Multigigabit COTS I/F

Ad hoc PhD Course Design methodologies for digital circuits and systems oriented to FPGA (Porf. Gennaro Di Meo Innovation and Entrepreneurship (Prof. Pierluigi Rippa) Conference SciTech, American Institute of Aeronautics and Astronautics, Orlando (USA) (6-10 January 2025) (Oral Presentation) PRIME Conference, 20th International Conference on PhD Research in Microelectronics and Electronics, Taormina, Italy (21 – 24 September 2025) (Oral Presentation) IAC25, International Astronautical Congress, Earth Observation Symposium, Sydney, Australia (29 September – 3 October 2025) (Oral Presentation)

tee_{PhD}

Giovanni Maria Capuano

3

2

Summary of study activities

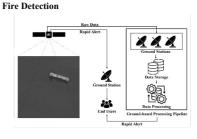
PhD Year	Courses	Seminars	Research	Tutoring / Supplementary Teaching
1 st	30	8,7	35	0
2 nd	13	5,3	42	0
3 rd	5,4	0,5	60	2

tee_{PhD}

Giovanni Maria Capuano

4

Research area: Edge AI in Space


Cloud Detection

Space missions are increasingly driving the need for spacecraft to operate with a high degree of onboard autonomy. The ability to process raw sensor data at the edge and execute time-critical decisions is essential to support mission scenarios requiring low-latency responsiveness and reduced reliance on ground infrastructure

AI technologies--including machine learning (ML) and deep learning (DL)--are increasingly integrated into space missions to strengthen onboard data processing and support autonomous operations

Earth Observation

- EO satellites generate TB of data daily
- Multiple Ground Contact
- Downlink bandwidth limitation
- Not useful data
- Delay between data acquisition and information

Data Filtering, Data Prioritization, Information Extraction **ee**PhD Giovanni Maria Capuano

5

Research area: Edge AI in Space

 ${\bf AI}\ {\bf technologies}-{\bf including}\ {\bf machine}\ {\bf learning}\ ({\bf ML})\ {\bf and}$ deep learning (DL)—are increasingly integrated into space missions to strengthen onboard data processing and support autonomous operations

DL for In-Space Operation

- ☐ Traditional spacecraft navigation methods involve pre-programmed instructions uploaded to the spacecraft before launch.
 - Deep space exploration
 - **Proximity operation**
 - Rendezvous
 - Formation fly

Require constant monitoring and guidance from ground control stations

Communication delay or interruptions

Autonomy: enable trajectory determination and control without reliance on ground-based systems.

Al for timely decision-making to avoid hazards

Relative Pose Estimation

Giovanni Maria Capuano

Problem: Performance Gap

The computational demands of recent DL workloads often exceed the capabilities of traditional radiationhardened space processors, typically designed using less dense semiconductor technologies to ensure reliability in harsh space environments.

Model Input Size Params. (M) FLOPs (G) Mem. (MB) VGG-16 ResNet-50 MobileNet V1 YOLOv3 YOLOv5s $224 \times 224 \times 3$ $\begin{array}{c} 224 \times 224 \times 3 \\ 224 \times 224 \times 3 \\ 416 \times 416 \times 3 \\ 416 \times 416 \times 3 \end{array}$ CNN Computational Requirements

~0.5 250

Space-grade Processor

RAD5545 ~20 5,592 up to 466 13.5

✓ Robust against radiation effects

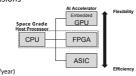
(Smaller transistor \rightarrow Less charge stored \rightarrow Easier to flip by radiation)

Key Limitations:

- Limited performance and lower clock speed
- High Cost

Modern DL Model Requirements:

- Resnet-50: 4.1 billion FLOPs per frame (224x224)
- ✓ Parallel processing: Thousands of MAC operations simultaneously



Giovanni Maria Capuano

Problem: Space Radiation

The growing computational demands of onboard AI applications, combined with the increasing maturity of COTS Edge AI hardware, have driven the exploration of heterogeneous processing architectures that incorporate such co-processors within the space domain

- faster deployment cycles
- lowering entry barriers for space missions
- short-duration and LEO missions

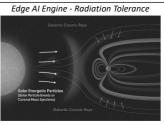
Low Earth Orbit (LEO)

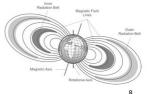
- Radiation: Relatively low (~10-50 krad/year)

 South Atlantic Anomaly (200 Km) (low-inclination

- South Atlantic Anomaly (200 Km) (low-inclinat orbit (6-7 pass a day) lium Earth Orbit (MEO)
 Alittude: "2,000 2,000 km
 Directly in the outer Van Hallen belt
 Radiation: Extremely high (100-1000 krad/year.

Geostationary Orbit (GEO) Altitude: ~35,790 km


- Beyond both Van Allen belts, Exposed to solar wind and cosmic rays.


 No magnetic protection
 Radiation: high (~50-100 krad/year)

Giovanni Maria Capuano

Device	(Krad)	SEL Immunity (LET)
Myriad 2 VPU	49	$8.8~{ m MeV\cdot cm^2/mg}$
RT PolarFire SoC	100	$68.2 \text{ MeV} \cdot \text{cm}^2/\text{mg}$
RT PolarFire FPGA	100	$80 \text{ MeV} \cdot \text{cm}^2/\text{mg}$
Myriad X VPU	20	$49.3 \text{ MeV} \cdot \text{cm}^2/\text{mg}$
Google Coral TPU	30	$57.3 \text{ MeV} \cdot \text{cm}^2/\text{mg}$
NVIDIA Jetson Xavier	20	40 MeV·cm ² /mg

Problem: Space Radiation

Originally developed for terrestrial edge and mobile applications, COTS devices are demonstrating operational reliability in short-duration missions and Low Earth Orbit (LEO) environments, accumulating initial flight heritage.

Space Mission	Technology	TOPS	Power	AI App	Mission Type
PhiSat-1 (ESA)	Intel Myriad-2 VPU	2	2 W	Cloud Detection	
PhiSat-2	Intel Myriad-2 VPU	2	2 W	Cloud Detection Vessel Detection Image Compression	
CogniSat-2	Intel Myriad X VPU (CogniSat- XE2)	4	2 W	Flood Detection RF Signal Classification	LEO
Forest-2	NVIDIA Jetson Xavier	21	10 W	Wildfire Detection	
NewSat-27	NVIDIA Jetson TX2i	1.33 (TFLOPs)	7 – 15 W	Ship Detection	
SC-LEARN (NASA)	Google TPU	4	2 W	TBD	
ee _{PhD}		Giovanni Ma	ria Canuano		9

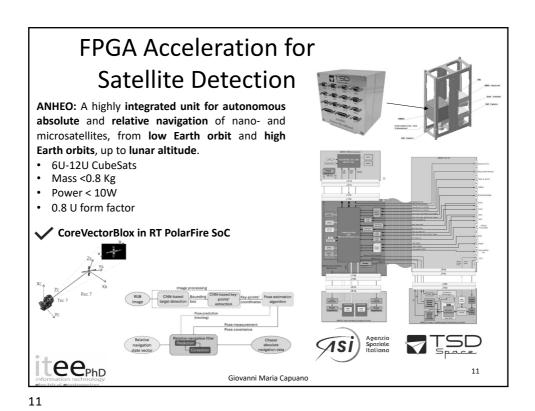
Giovanni Maria Capuano

9

Research area: FPGAs for AI in Space

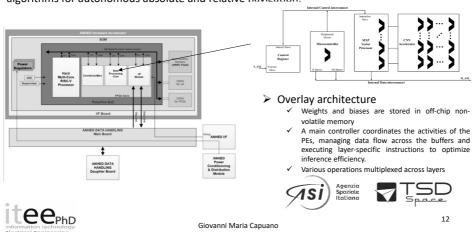
Field-Programmable Gate Arrays (FPGAs), in contrast, have been adopted in space applications for several decades. Radiation-hardened /tolerant FPGAs are now commercially available and can withstand the harsh space environment even in demanding missions, such as long-duration deployments in GEO and beyond.

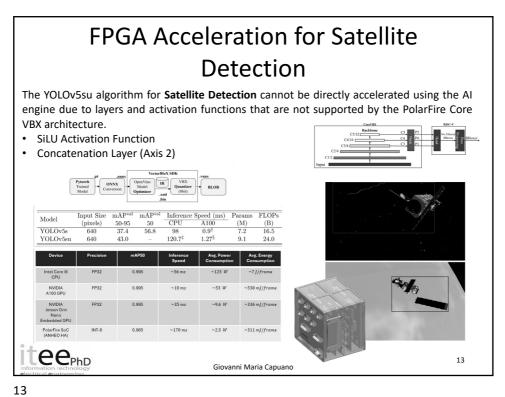
Device	Technology	TID (Krad)	SEL Immunity (LET)		
Intel Myriad-2 VPU	VPU	49	$8.8~MeV\cdot cm^2/mg$		
Intel Myriad X VPU	VPU	20	49.3 MeV · cm²/mg		
Google Coral TPU	TPU	30	57.3 MeV · cm²/mg		
NVIDIA Jetson Xavier	GPU	20	$40~MeV\cdot cm^2/mg$		
AMD Xilinx Kintex UltraScale	FPGA	100	$80~MeV\cdot cm^2/mg$		
AMD Xilinx Virtex-4QV	FPGA	300	125 MeV · cm²/mg		
Microchip RT PolarFire	FPGA	100	68.2 MeV · cm²/mg		
Microchip RT PolarFire	SoC (FPGA + RISC-V)	100	$80~MeV\cdot cm^2/mg$		
ECCC totals and the LETTLE website CO 2 May 1 and 1					

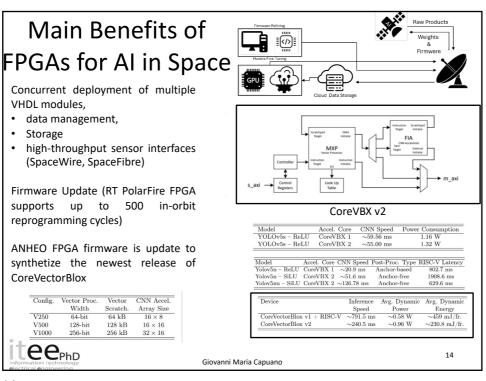

ECSS Latch-up immunity: LET threshold > 68.2 MeV·cm2 /mg

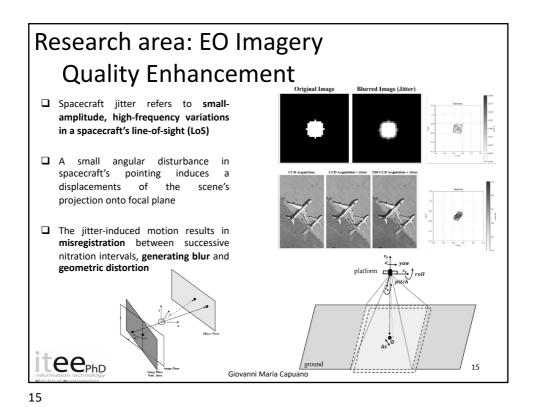
Giovanni Maria Capuano

5


10


ee_{PhD}




FPGA Acceleration for Satellite Detection

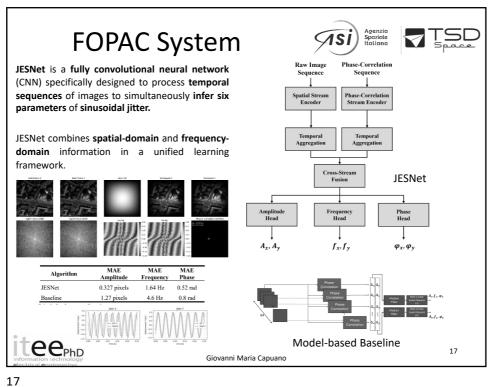
Microchip CoreVBX: The HA leverages the advanced capabilities of Microchip's PolarFire SoC that combines a powerful 64-bit 5x core RISC-V Microprocessor Sub-System (MSS), with the PolarFire FPGA fabric in a single device. The board enables the real-time execution of algorithms for autonomous absolute and relative navigation.

The objective of FOPAC is to design and validate an active motion-control system for the focal plane of electro-optical payloads dedicated to Earth observation, with the goal of enhancing image quality in terms of both spatial resolution and SNR.

FOPAC introduces fine opto-mechatronic stabilization directly at the focal-plane level.

An actively controlled, piezo-actuated focal plane for the suppression of attitude-jitter components.

By appropriately driving the piezoelectric nanopositioner, micro-displacements can


Giovanni Maria Capuano

16

line of sight.

eePhD

be applied during image acquisition to compensate high-frequency sinusoidal attitude disturbances and stabilize the

Research products G.M. Capuano, S. Capuozzo, A.G.M. Strollo, N. Petra, Super-Resolution YOLO Object Detection for Maritime Surveillance with Real-Time FPGA Processing Onboard Spacecraft, [P1] International Journal of Acta Astronautica, Elsevier vol. 238, Part A, pp. 1291-1310, 2026, DOI: 10.1016/j.actaastro.2025.09.018 T.A. La Marca, M.D. Graziano, M. Grassi, L. Iannascoli, L. Cavicchiolo, A. Capanni, M. Duzzi, G.M. Capuano, V. Fortunato, C. Cardenio, G. Leccese, M. Rinaldi, M. Di Clemente, R. Luciani, R. Natalucci, V. Pulcino, [P2] Mission and system design for the EarthNext Cubesat VLEO mission, CEAS Space Journal, Springer vol. 238, pp. 1-17, 2025, DOI: 10.1007/s12567-025-00663-2 G. M. Capuano, F. Saggiomo, A. G. M. Strollo, N. Petra, B. Confuorto, E. Zaccagnino & M. Di Clemente, Enhancing Satellite Imagery through Advanced Focal Plane In-flight Active Motion Control: The FOPAC System Implementation [P3] International Astronautical Congress, Earth Observation Symposium, Sydney, Australia, October 2025, In Proceedings of the International Astronautical Congress, IAC-25-B1,IPB,17,x96978 G.M. Capuano, S. Capuozzo, A.G.M. Strollo, N. Petra, Benefits of FPGAs for Deep Learning Acceleration, PRIME Conference, 20th International Conference on PhD Research in Microelectronics and Electronics, Taormina, Italy, September 2025, In Proceedings of the International Astronautical Congress, IAC-24-B1.IP.92.X89480 G. M. Capuano, V. Capuano, G. Napolano, R. Opromolla, M. Severi, A. G. M. Strollo, N. Petra, G. Cuciniello, E. Zaccagnino & G. FPGA Hardware Acceleration for Deep Learning-Based Satellite Relative Pose Estimation, American Institute of Aeronautics and Astronautics SciTech Forum on aerospace research, development, and technology, Orlando, USA, January 2025, In Proceedings of the AIAA SCITECH 2025 Forum (p. 2715) **ee**PhD Name Surname 18

Research products G.M. Capuano, S. Capuozzo, A.G.M. Strollo, N. Petra, FPGA-Based Hardware Acceleration for Real-Time Maritime Surveillance and Monitoring Onboard Spacecraft, Space 2024: Conference on A1 in and for Space European Centre for Space Applications and Telecommunications (ECSAT), Didcot, United Kingdom, October 2024, In Proceedings of SPAICE2024: The First Joint European Space Agency/IAA Conference on AI in and for Space (pp. 156-161) G.M. Capuano, S. Capuozzo, A.G.M. Strollo, N. Petra, Super-Resolution-Based Small Object Detection for Real-Time Surveillance and Monitoring: An Onboard Satellite FPGA International Astronautical Congress, Earth Observation Symposium, Milan, Italy, October 2024, In Proceedings of the International Astronautical Congress, IAC-24-B1.IP.92.X89480 G.M. Capuano, A.G.M. Strollo, N. Petra, Super Resolution CNN for a quincunx sampling-based panchromatic earth observation imager for nanosatellites, International Astronautical Congress 2023 Baku, Azerbaijan, October 2023, In Proceedings of the International Astronautical Congress, IAC-23,E2,4,5,x79398

19

PhD thesis overview

- Problem: Reduce reliance on ground-based processing in space missions
 - EO satellites generate TB of data daily
 - Multiple Ground Contact
 - Limited Downlink Bandwidth
 - Not Useful Data
 - Latency between image acquisition and information extraction & delivery
- · Objective: Enable AI Intelligence Onboard Spacecraft
 - Rapid Alert
 - Reliable Information Extraction
 - Data Prioritization

Name Surname

20

PhD thesis

- Integrate deep-learning super-resolution with object detection to enable reliable, realtime target recognition onboard satellites, reducing dependence on ground processing and communication bandwidth.
- First framework combining SR-based enhancement and YOLO detection optimized for FPGA deployment, with a custom maritime dataset including synthetic low-visibility and cloud-covered scenes.
- **Portability toward space-grade RT PolarFire devices**, enabling in-orbit deployment and technology transfer to flight-qualified payloads.
- Validate through a rigorous experimental pipeline:
 - Multi-Source Dataset
 - Five-Fold Cross-Validation
 - Object-Size-based Accuracy Metrics
 - Hardware-aware model design tailored for CoreVectorBlox architecture, ensuring full accelerability on embedded AI cores;
 - Hardware performance test on PolarFire SoC (benchmark with NVIDIA Jetson Orin Nano GPU)

Name Surname

21

21

Research area: Maritime Surveillance

Accurate vessel detection and timely information extraction are essential for a wide range of maritime surveillance and monitoring operations, both civilian and defense-related:

- Vessel Tracking
- Unauthorized Fishing
- Detecting Oil spills
- Illegal Migration
- · Search and Rescue Missions

Object Detection enables the **identification** and **localization** of objects within an image by recognizing them from various classes and determining their boundaries with bounding boxes.

Small Vessel Detection Problem:

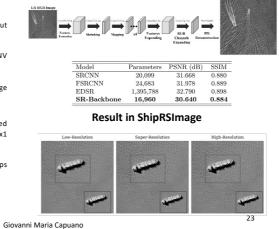
Small Size

- Limited Spatial Resolution
- Minimal Object Pixelation
- Low SNR
- No Adequate Structure Information
- Complex Background

22

Giovanni Maria Capuano

The SR backbone novel CNN architecture specifically developed for real-time SISR applications. The model is optimized as an integral component of object detection networks, featuring a lightweight design that minimizes memory footprint and computational overhead

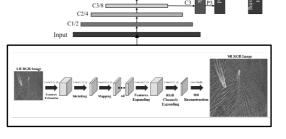

 Feature Extraction: Directly from the LR input using a series of convolutional layers

 Shrinking: Feature reduction through a 1x1 CONV layer to lower computational complexity

 Non-linear Mapping: To capture deeper image representations.

 Expansion: The shrunk features are expanded back to a higher dimension using another 1x1 convolution layer

 RGB Channel Regression & Pixel-Shuffle: Maps aggregation and SR image reconstruction



23

eePhD

SR-YOLOv5 for Small Vessel Detection

SR-YOLOv5s is an enhanced version of the YOLOv5 object detector that incorporates the **SR-Backbone** for the performance improvement of small vessel detection

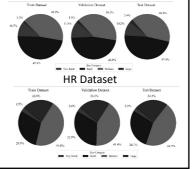
 Model
 mAP50 All
 mAP50.95 All
 mAP50 Small
 mAP50 Very Small

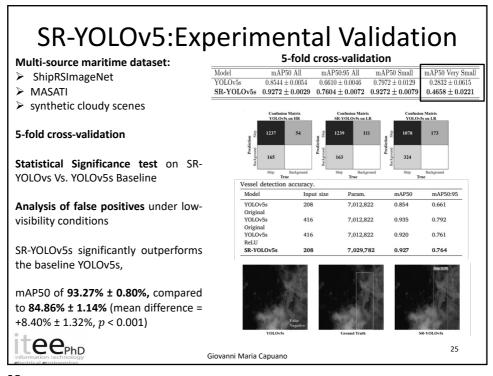
 YOLOv5s
 0.8544 ± 0.0054
 0.6610 ± 0.0046
 0.797 ± 0.0129
 0.2832 ± 0.0615

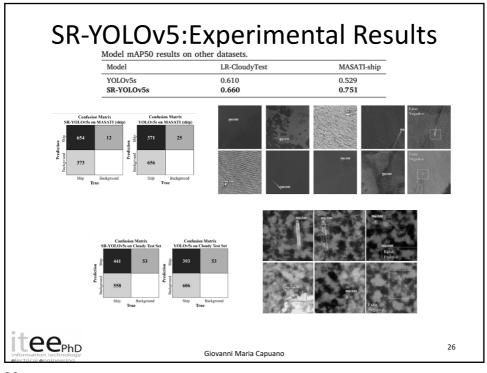
 SR-YOLOv5s
 0.9272 ± 0.0029
 0.7604 ± 0.0072
 0.9272 ± 0.0079
 0.4658 ± 0.0221

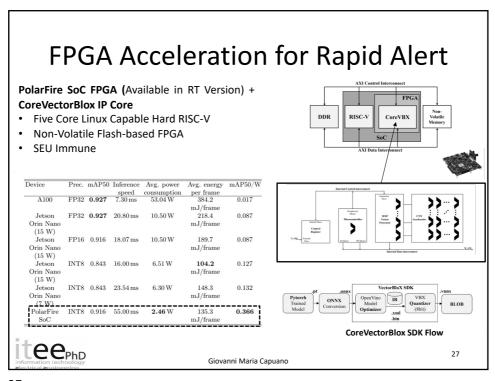
Result on LR-ShipRSImage

information technology


Giovanni Maria Capuano


LR-ShipRSImage (3,435 RGB):


- 80% Training
- 20% Validation


LR Dataset

• 10% Test

