

PhD in Information Technology and Electrical Engineering Università degli Studi di Napoli Federico II

PhD Student: Mario Noioso

Cycle: XXXIX

Training and Research Activities Report

Academic year: 2024-25 - PhD Year: Second

student signature

Maria Noioso

Tutor: prof.ssa Stefania Santini

Co-Tutor

Date: October 28, 2025

UniNA ITEE PhD Program

Https://itee.dieti.unina.it

tutor signature

PhD in Information Technology and Electrical Engineering

Cycle: Author:

1. Information:

➤ PhD student: Mario Noioso PhD Cycle: XXXIX

DR number: DR997202Date of birth: 17/11/1995

➤ Master Science degree: Automation Engineering University: Federico II

> Scholarship type: no scholarship

> Tutor: Stefania Santini

> Co-tutor

2. Study and training activities:

Activity	Type ¹	Hours	Credits	Dates	Organizer	Certificate 2
The power of inhibition fo r collective decision making in minimalistic robot swarms	Seminar	1	0.2	14/11/24	SSM Scientific Colloquium	Y
AI and Enabling Technologies for Social Robots	Seminar	1.5	0.3	03/12/24	Prof. Cutugno	Y
Strutture basate su regole e strutture basate su approssimazioni	Seminar	1	0.2	10/12/24	Prof. Cutugno	Y
Solid State Transformers: Fundamentals, Insights and New Trends	Seminar	2	0.4	20/12/24	Prof. Di Noia	Y
Lunar Laser Retroreflectors for ESA- ASI's Moonlight, Farside & South Pole	Seminar	1	0.2	16/01/25	SSM Scientific Colloquium	Y
Bridging Physics to Biomedical Sciences	Seminar	1	0.2	30/01/25	SSM Scientific Colloquium	Y
Optimisation-based Control of Flexible Resources in Sustainable Energy Networks	Seminar	1	0.2	05/02/25	Prof. Luigi Glielmo	Y
Emergent behaviors and collective decisions in cyber-physical-human systems	Seminar	1	0.2	13/02/25	SSM Scientific Colloquium	Y
How to boost your PhD	Course	18	5	19/02/25	Prof.Antigo	Y

UniNA ITEE PhD Program Https://itee.dieti.unina.it

Training and Research Activities Report PhD in Information Technology and Electrical Engineering

Author:

Cycle:

					3.6	
E 1: 11 0: .:	G .	1	0.2	20/02/25	ne Marino	***
Explainable Scientific Machine Learning:	Seminar	1	0.2	20/02/25	SSM Scientific	Y
Theoretical and Practical					Colloquium	
Perspectives						
Dynamic Risk Assessment in Industrial	Seminar	1	0.2	04/03/25	Prof. Francesco	Y
Applications: Leveraging					Vitale	
Bayesian Inference for					Vitare	
Enhanced Decision-						
Making						
Numerical bifurcation	Seminar	1	0.2	07/03/25	Dr. Gabor	Y
analysis for delay					Orosz	
equations	G .	1	0.2	20/02/25	GG) f	**
Bridging Local and Global Universe via	Seminar	1	0.2	20/03/25	SSM Scientific	Y
gravitational astrometry:					Colloquium	
The Milky Way paradigm					Conoquium	
Safety Assessment of	Seminar	1.5	0.3	24/03/25	Stefano	Y
Autonomous Vehicles:					Russo	
Approaches and						
Challenges						
Robot Autonomy among	Seminar	1	0.2	15/04/25	Prof. Fabio	Y
Decision-Making Agents TESTING AND	Carrage	722	9	14/05/25	Ruggiero	Y
VALIDATION OF	Course	122	9	14/05/25	Angelo Coppola	Y
AUTOMATED ROAD					Соррога	
VEHICLES						
Time Delays, Hopf	Seminar	1	0.2	13/06/25	Dr. Gabor	Y
Bifurcation and					Orosz	
Synchronization		_				
Sovranità digitale cos'è e	Seminar	2	0.4	23/06/25	Marcello	Y
quali sono le principali					Cinque	
minacce al cyberspazio nazionale						
Superconducting Radio	Seminar	1	0.2	24/06/25	Dr.	Y
Frequency Cavities for		*	0.2	2 11 301 23	Edoardo	ī
Quantum Computing and					Giusto	
Communication						
Trusted Execution	Seminar	1.5	0.3	27/06/25	Dr.	Y
Environments for QPUs					Edoardo	
IEEE ITCC I- 1'	G		1	10/07/25	Giusto	3 7
IEEE ITSS Italian Chapter Annual Meeting	Seminar	6	1	10/07/25	IEEE ITSS Italian	Y
and PhD Award 2025					Chapter	
Control of multi-agent	Seminar	1.5	0.3	05/09/25	Dr. Gabor	Y
systems with time delays:					Orosz	-
theory and applications						

PhD in Information Technology and Electrical Engineering

Author:

Cycle:

Guardians or Threats? AI	Seminar	4	0.8	17/10/25	5G	Y
as the Frontlines of					Academy	
CyberSecurity						

- Courses, Seminar, Doctoral School, Research, Tutorship
- Choose: Y or N

2.1. Study and training activities - credits earned

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	0	1.1	8.9	0	10
Bimonth 2	5	1	4	0	10
Bimonth 3	0	1.1	8.9	0	10
Bimonth 4	9	1.1	0	0	10.1
Bimonth 5	0	1	9	0	10
Bimonth 6	0	1.1	8.8	0	9.9
Total	14	6.4	39.6	0	60
Expected	30 - 70	10 - 30	80 - 140	0 - 4.8	

3. Research activity:

In recent years, the development of Highly Automated Vehicles (HAVs)—mainly made possible by the introduction and usage of AI-based algorithms for their key features (perception, decision-making and planning (DMP), and control systems)—has seen significant progress. Their usage, particularly when controlled cooperatively and properly organized in platoons, is promising for reducing accidents, pollution, and congestion, while increasing transport accessibility and saving fuel, as remarked in [1]. However, even if the technological challenges seem to be met, the numerous accidents involving HAVs are evidence that they are still far from reliable when operating in the cluttered, unstructured, or unseen environments where they are intended to function.

Indeed, this same technological complexity, given by the increasingly cutting-edge innovations introduced and the increasing number of devices interacting with each other, is progressively transforming AVs into complex systems. Their interaction with the arbitrarily complex, infinitedimensional real environment necessitates the consideration of all possible traffic situations and influencing factors during their design and testing phases.

It is therefore clear that the resulting test space cannot be covered adequately using traditional distancebased statistical approaches [2], since the reduced variability of inputs encountered during "common" driving situations does not trigger all possible AV behaviours.

For this reason, a scenario-based mixed approach—focusing on the iterative search for safety-relevant scenarios, testing them in simulation, and, finally, their implementation on proving grounds—was first introduced with the European project PEGASUS [3].

Thus, with the focus on each individual scenario and on the explicit and implicit factors characterizing it, the challenge for properly validating an AV becomes that of finding the "corner-cases" that trigger an unexpected behaviour of the vehicle [2]. The validation problem, then, can be likened to an optimization problem, with the influencing factors (external and internal) as its possible dimensions.

PhD in Information Technology and Electrical Engineering

Author:

For this reason, in order to avoid proceeding with a brute-force approach on this resulting search space, and to highlight only the corner cases that an AV could encounter, the aim of research in the last years has been to develop test automation frameworks [6]. These frameworks must be capable of tackling the black-box, simulation-based problem deriving from the interconnection with a simulation environment.

However, although V2X sensors (with their communication protocols) represent a key factor for AV introduction, no test automation framework has yet considered the effects of their non-idealities—such as latency and reduced network bandwidth—as triggering factors, thus excluding important sources of SOTIF issues. SOTIF, which stands for Safety Of The Intended Functionality, is the safety standard (ISO 21448) dealing with this topic.

To tackle this point, while also examining the coupled interaction between these non-idealities (e.g., latency) and different weather conditions on an AV, a simulation environment based on Scenic and CARLA has been created to execute scenario-based simulations. This environment, externally connected to a test automation framework, was then used for executing scenario-based MIL (model-in-the-loop) tests on CACC (Cooperative Adaptive Cruise Control), finding the corner cases for vehicle safety by means of a population-based optimization process (Genetic Algorithm of the Global Optimization Toolbox). Sub-optimal solutions can then be tested in the real world to properly assess the ODD (Operational Design Domain) of the ADAS.

References:

Cycle:

- [1] Y. Ma, C. Sun, J. Chen, D. Cao and L. Xiong, "Verification and Validation Methods for Decision-Making and Planning of Automated Vehicles: A Review," in *IEEE Transactions on Intelligent Vehicles*, vol. 7, no. 3, pp. 480-498, Sept. 2022, doi: 10.1109/TIV.2022.3196396.
- [2] F. Klück, M. Zimmermann, F. Wotawa and M. Nica, "Genetic Algorithm-Based Test Parameter Optimization for ADAS System Testing," 2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS), Sofia, Bulgaria, 2019, pp. 418-425, doi: 10.1109/QRS.2019.00058.
- [3] Winner, H., Lemmer, K., Form, T., Mazzega, J. (2019). PEGASUS—First Steps for the Safe Introduction of Automated Driving. In: Meyer, G., Beiker, S. (eds) Road Vehicle Automation 5. Lecture Notes in Mobility. Springer, Cham. https://doi.org/10.1007/978-3-319-94896-6 16
- [4] C. Neurohr, L. Westhofen, M. Butz, M. H. Bollmann, U. Eberle and R. Galbas, "Criticality Analysis for the Verification and Validation of Automated Vehicles," in *IEEE Access*, vol. 9, pp. 18016-18041, 2021, doi: 10.1109/ACCESS.2021.3053159.

4. Research products:

A SOTIF-based simulation framework for evaluating the combined impact of V2X and weather conditions – Noioso M., et al. – Submitted

PhD in Information Technology and Electrical Engineering

Author:

Cycle:

- 5. Conferences and seminars attended
- Periods abroad and/or in international research institutions
- 7. **Tutorship**
- Plan for year three

Planned Research Activities:

- Analyzing the "cut-out" scenario already considered (where a leading vehicle changes lanes due to the abrupt braking of a preceding hidden vehicle) within an augmented configuration space. This space will include new V2X and additional scenario-influencing factors enabling the analysis of the coupled effects of more than two factors.
- Employing surrogate models or different optimization algorithms specifically designed to handle the complexity that arises from considering continuous stochastic variables.
- Replacing the CARLA simulator's built-in physics (from UE4) with a fully controllable, custom white-box model. This customization will ensure greater transparency and manipulability of the underlying dynamics.

UniNA ITEE PhD Program Https://itee.dieti.unina.it