

PhD in Information Technology and Electrical Engineering Università degli Studi di Napoli Federico II

PhD Student: Francesco Cufino

Cycle: XXXIX

Training and Research Activities Report

Academic year: 2024-25 - PhD Year: Second

Tutor: prof. Fabio Ruggiero

Francesso Cufino

Date: October 29, 2025

Fabio Ruggia

PhD in Information Technology and Electrical Engineering

Cycle: XXXIX

Author: Francesco Cufino

1. Information:

PhD student: Francesco Cufino
PhD Cycle: XXXIV

DR number: DR997190Date of birth: 20/03/1999

> Master Science degree: Automation and Robotics Engineering University: Università degli studi di Napoli Federico II

> Scholarship type: PNRR - DM 118/2023

> Tutor: Fabio Ruggiero

2. Study and training activities:

Activity	Type ¹	Hours	Credits	Dates	Organizer	Certificate ²
-Study of the	Research		10	01/11/2024 -		
state of the art of				31/12/2024		
pushing						
manipulation						
through						
humanoid robot						
-Started						
designing a						
possible						
innovative						
framework for						
humanoid						
pushing a						
wheelchair						
-Contribution						
for experiments						
for non-						
prehensile ball						
catching						
How to boost	Course	18	5	08/01/2025 -	Prof.	Y
your PhD				29/01/2025	Antigone	
					Marino	
-Continuation of	Research		5	01/01/2025 -		
designing a				28/02/2025		
control						
framework for						
humanoid robot						
to push a						
wheelchair						
-Experimental						
activity: testing						

UniNA ITEE PhD Program

Cycle: XXXIX **Author: Francesco Cufino**

humanoid robot						
motion and						
definition of the						
experimental						
setup for						
pushing						
wheelchair						
-Support for						
ARTE project in						
collaboration						
with Apple						
Developer Apple						
Academy						
-Supervision of						
Master Thesis						
consisting in						
force control for						
thickness						
measurement						
-Contribution to						
project proposal						
for deformable						
object						
manipulation						
through visuo-						
tactile						
information						
Automatic	Seminar	1	0.2	24/03/2025	Prof.	Y
Control in the					Bruno	
Era of Artificial					Siciliano	
Intelligence						
Robot Autonomy	Seminar	1	0.2	15/04/2025	Prof.	Y
among Decision-					Fabio	
Making Agents					Ruggiero	
Driving	Seminar	1	0.2	16/04/2025	Prof.	Y
Innovation:			<u>-</u>		Bruno	
Inside KUKA's					Siciliano	
Research and						
Development						
Landscape						
-Continuation of	Research		9	01.03.2025 -		
designing a	1 Cocai Cii			30.04.2025		
control				50.07.2025		
framework for						
humanoid robot						
to push a wheelchair						
-Contribution in						
-Contribution in					<u> </u>	

Cycle: XXXIX **Author: Francesco Cufino**

designing Mixed						
Reality User-						
friendly						
Interface for						
Robot						
Teleoperation						
for ARTE						
project in						
collaboration						
with Apple						
Developer						
Academy						
-Experimental						
activity: Testing						
and evaluation of						
Mixed Reality						
User friendly						
Interface for						
Robot						
Teleoperation						
-Submission of						
"A Mixed						
Reality User-						
friendly						
Interface for						
Robot						
Teleoperation"						
paper at						
International						
Conference on						
Social Robotics						
-Experimental						
activity: testing						
and improving						
compliant non-						
prehensile						
pushing						
manipulation						
"Teoria dei	Tutorship	2	0.4	01/03/2025 -	Prof.	
sistemi"	i utorsnip		0.7	30/04/2025	Fabio	
(Dynamic				50/07/2023	Ruggiero	
systems theory):					Nuggicio	
-Introduction to						
MATLAB						
-MATLAB						
-MATLAB exercise						
	Seminar	1	0.2	17/06/2025	Prof.	Y
	seminar	1	0.2	1 //00/2025		ĭ
Transfer for					Bruno	

UniNA ITEE PhD Program

Cycle: XXXIX

Author: Francesco Cufino

Cycle: XXXIX

			1	I	1
Learning for					
Non-Prehensile					
Manipulation					
Teoria dei	Tutorship	0.2	01.05.2025 -	Prof.	
sistemi"	1 worship	~~	30.06.2025	Fabio	
(Dynamic			30.00.2023	Ruggiero	
				Ruggiero	
systems theory):					
-MATLAB					
exercise					
Field and service					
robotics:					
-Support in					
homeworks					
correction					
-Implementation	Research	10	01.07.2025 -		
of control			31.08.2025		
framework for			01.00.2020		
humanoid robot					
to push a wheelchair					
continued,					
adding					
admittance					
control for the					
arms.					
-Experimental					
activity: demo					
for humanoid					
robot to push a					
wheelchair					
completed.					
-Revisions for					
RAL and T-					
MECH.					
-Started state-of-					
the-art study of					
reinforcement					
learning		10			
-Paper "A Mixed	Research	10	01.09.2025 -		
Reality User-			31.10.2025		
friendly					
Interface for					
Robot					
Teleoperation"					
presented by co-					
authors at					
International					
Conference of					
conference of		L	1	l	

Author: Francesco Cufino

Cycle: XXXIX **Author: Francesco Cufino**

Social Robotics				
(ICSR)	ı			
-Poster	ı			
"Compliant Non-	ı			
Prehensile	ı			
Pushing	ı			
Manipulation"	ı			
presented by co-	ı			
authors at	ı			
Italian	ı			
conference of	ı			
Robotics and	ı			
Intelligent	ı			
Machines (I-	ı			
RIM 3D)	ı			
-State-of-the-art				
study of	ı			
reinforcement				
learning	ı			
-Learning of the				
usage of Isaac				
Lab and				
environment				
setup for robotic				
manipulation				
tasks				
-Training				
completed for				
non-prehensile				
pushing				
manipulation				
-Training				
completed for				
whole-body				
multi-contact				
pushing				
manipulation	İ			

Courses, Seminar, Doctoral School, Research, Tutorship

Choose: Y or N

2.1. Study and training activities - credits earned

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	0	0	10	0	10
Bimonth 2	5	0	5	0	10
Bimonth 3	0	0.6	9	0.4	10
Bimonth 4	0	0.6	9.2	0.2	10
Bimonth 5	0	0	10	0	10

PhD in Information Technology and Electrical Engineering

Cycle: XXXIX **Author: Francesco Cufino**

Bimonth 6	0	0	10	0	10
Total	5	1.2	53.2	0.6	60
Expected	30 - 70	10 - 30	80 - 140	0 - 4.8	

3. Research activity:

The research activity conducted during the current year focuses on robotic manipulation, which have potential applications in service robotics scenarios. Within this context, four different main topics have been investigated:

- 1. Pushing a wheelchair with a humanoid robot;
- Robotics teleoperation through a mixed reality user-friendly interface;
- Compliant non-prehensile pushing manipulation;
- Whole-body multi-contact pushing manipulation.

At present, dexterous manipulation techniques are still not fully mature for deployment in real-world service robotics environments. The topics addressed in this research year aim to push the boundaries of the current state of the art and take a significant step toward possible applicability in service robotics scenarios.

Methodology

- 1. **Pushing a wheelchair with a humanoid robot**. To push a wheelchair with a humanoid robot, the idea is to exploit the built-in robot walk and to work with the upper limb joints to better perform the task. An admittance control is implemented for the arms and used contextually to the robot pushing execution task. The goal for a future development is to regulate the force while optimizing upper limb configuration to improve stability
- 2. Robotics teleoperation through a mixed reality user-friendly interface. To enable untrained users to effectively operate a robot, an interactive application leveraging SwiftUI, RealityKit, and ARKit, is developed and deployed it on an extended reality (XR) headset. The application enables users to control a robot by moving a virtual sphere that serves as a dynamic target. Using RealityKit's support for natural hand and eye gestures, users guide the robot through easy and subtle motions, eliminating the need for con trollers or exaggerated gestures. The framework is divided into two separate parts, the XR headset application and the robot interface, communicating over Local Area Network (LAN) via a socket through standard TCP/IP protocol. The headset acts as the client, sending a JSON-formatted message to the server on which a robot interface is running.
- 3. Compliant non-prehensile pushing manipulation. Most of this work has been already developed during the first year. To ensure safe robotic pushing manipulation operations in human populated environments, the robot must comply with external physical interactions and exhibit a passive behaviour. To achieve this, we extend a state-of-the-art model to realize a desired pushing force while varying the contact point using an impedance-controlled robot. Control is implemented through optimal modulation of the robot's position and velocity set-point. However, external forces can cause trajectory tracking errors, prompting the pushing controller to compensate by increasing the pushing force. To address this issue, we integrate an energy tank passivity-based control

PhD in Information Technology and Electrical Engineering

Cycle: XXXIX **Author: Francesco Cufino**

framework to modulate the velocity set-point in a way that ensures passivity, preventing uncontrolled energy buildup in the system.

4. Whole-body multi-contact pushing manipulation. Performing whole body multi-contact pushing manipulation is very complex with model-based approaches since choosing the optimal contact point location is not trivial. Model-based planners are too slow to be used in an online feedback control to solve this task. Hence, the adopted approach is based on Reinforcement Learning, which, in favorable conditions like initial configuration and elementary object shape, can easily solve the problem. The goal for the future development is to understand the limits of a traditional Reinforcement Learning approach for this task and understand possible advantages including information deriving from the model-based planner.

Results

- 1. Pushing a wheelchair with a humanoid robot. The robot showed to be able to push a wheelchair with people of highly different weights sitting on it along a linear trajectory.
- 2. Robotics teleoperation through a mixed reality user-friendly interface. The framework has been statistically evaluated over a heterogeneous user sample who was asked to complete three different manipulation tasks. The evaluation has been done using the subjective standard measures NASA Task Load Index (TLX) and System Usability Scale (SUS), as well as a custom designed questionnaire. Results showed that errors and execution times were within acceptable limits, confirming reliable and efficient system performance. User feedback showed low workload (NASA-TLX) and high usability (SUS). The software was easy to use, with tasks seen as manageable. Users were highly satisfied with position control, though orientation control managed via a sensitive slider—received slightly lower ratings. Overall feedback was very positive, highlighting comfort and ease of use.
- 3. Compliant non-prehensile pushing manipulation. The framework had been already validated in simulation using a 7-DOF KUKA LBR iiwa 7 as well as on the real system ABB Mobile Yumi in the first-year work, to show the passive interaction. During the second year, a supplementary experimental campaign has been conducted on KUKA LBR iiwa 7, to show trajectory tracking capabilities under uncertainties and at higher speed. On iiwa, tests under varying friction, mass, path, and velocity showed performance degradation mainly at higher rotational friction, lower mass, curved paths, or higher speed. Overall, mean errors (0.0165 m, 0.1003 rad) remained comparable to state-of-the-art methods.
- 4. Whole-body multi-contact pushing manipulation. The learned policy has been tested in simulation in favorable conditions of suitable initial configuration and cylindrical object shape. The results showed an average success rate between 85% and 90%, computed as succeeded episodes over completed episodes.

4. Research products:

Scientific paper: Compliant Non-Prehensile Pushing Manipulation.

Authors: F. Cufino, M. Selvaggio, F. Amadio, F. Ruggiero.

Journal: IEEE Transactions on Robotics.

Current state: decision pending.

Scientific paper: A Mixed Reality User-friendly Interface for Robot Teleoperation.

PhD in Information Technology and Electrical Engineering

Cycle: XXXIX

Author: Francesco Cufino

Authors: M. Chemerys, M. Novoselov, S. D. M. Santos, R. Aliotta, F. Cufino, and F. Ruggiero Conference: International Conference of Social Robotics (ICSR) (2025).

5. Conferences and seminars attended

6. Activity abroad

Whole body multi-contact pushing manipulation, in the period 01.09.2025 – 31.10.2025 at The University of Edinburgh, under the supervision of Prof. Sethu Vijayakumar, with the Statistical Learning and Motor Control group (SLMC).

7. Tutorship

"Teoria dei sistemi" (Dynamic systems theory), 4 hours:

- Introduction to MATLAB.
- Exercises with MATLAB.

"Field and Service Robotics":

• Support in Homework correction