

PhD in Information Technology and Electrical Engineering Università degli Studi di Napoli Federico II

PhD Student: Francesco Cufino

Cycle: XXXIX

Training and Research Activities Report

Academic year: 2023-24 - PhD Year: First

Tutor: prof. Fabio Ruggiero

Francesso Cufino

Date: November 04, 2024

Fabio Ruggia

PhD in Information Technology and Electrical Engineering

Cycle: XXXIX

Author: Francesco Cufino

1. Information:

➤ PhD student: Francesco Cufino PhD Cycle: XXXIV

DR number: DR997190Date of birth: 20/03/1999

Master Science degree: Automation and Robotics Engineering University: Università degli studi di Napoli Federico II

> Scholarship type: PNRR - DM 118/2023

> Tutor: Fabio Ruggiero

2. Study and training activities:

Activity	Type ¹	Hours	Credits	Dates	Organizer	Certificate ²
Numerical	Course	20	4	20/11/2023 -	IMT	Y
Optimization				15/12/2023	Lucca,	
					Prof.	
					Alberto	
					Bemporad	
Multi-agent	Seminar	1	0.2	21/12/2023	Prof.	Y
autonomous					Vincenzo	
flight at					Lippiello	
Leonardo Labs						
-Study of state of	Research		5.8	01/11/2023 -		
the art on: non-				31/12/2023		
prehensile						
pushing; whole-						
body control						
-Development of						
a theory for						
compliant non-						
prehensile						
pushing and						
preparation of						
the related paper						
-Integration at						
ABB Research						
Center, Västerås,						
Sweden						
-Contribution						
for revision of a						
paper for IEEE						
Transaction on						
Robotics (T-RO)						

UniNA ITEE PhD Program Https://itee.dieti.unina.it

Cycle: XXXIX **Author: Francesco Cufino**

-Laboratory activity: experiments for compliant non- prehensile pushing at PRISMA LAB and at ABB Research Center, Västerås, Sweden						
Neural Networks and Deep Learning: Theoretical Foundations	Course	30	3	09/01/2024 - 21/02/2024	Scuola Superiore Sant'Anna di Pisa, Prof. Giorgio Buttazzo	Y
Lessons Learned from Superhuman Autonomous Drone Racing	Seminar	1	0.2	10/01/2024	Prof. Bruno Siciliano	Y
-Study of state of the art on: passivity-based control -Extension of the theory for compliant non-prehensile pushing to passive non-prehensile pushing and preparation of the related paper -Simulation of non-prehensile passive pushing -Contribution for revision of a paper for Robotics and Autonomous Systems (RAS) -Laboratory	Research		6.8	1/01/2024 - 29/02/2024		

activity:						
experiments for						
passive non-						
prehensile						
pushing at ABB						
Research Center,						
Västerås,						
Sweden						
Analytic center	Seminar	1	0.2	09/04/2024	Prof.	Y
selection of					Bruno	
optimization-					Siciliano	
based controllers						
for robot ecology						
-Further	Research		9	01/03/2024 -		
development of				30/04/2024		
the theory for				00,01,2021		
compliant non-						
prehensile						
passive pushing						
and preparation						
of the related						
paper						
-Simulation of						
compliant non-						
prehensile						
passive pushing						
-Submitted two						
reviews for						
International						
Conference on						
Intelligent						
Robots and						
systems (IROS)						
"Teoria dei	Tutorship	4	0.8	01/03/2024 -	Prof.	
sistemi"	1 ato 1 ship] -	""	30/04/2024	Fabio	
(Dynamic				OU II BUBT	Ruggiero	
systems theory):					Ruggiero	
-Introduction to						
MATLAB						
-Exercises on						
diagonalization,						
Jordanization,						
power matrix,						
exponential						
matrix, stability						
with MATLAB						
Innovation and	Course	12	4	12/14/21 –	Prof.	Y
Entrepreneurshi				26/06/2024	Pierluigi	

Cycle: XXXIX

Author: Francesco Cufino

Cycle: XXXIX **Author: Francesco Cufino**

		1		T		T
p					Rippa	
Optimization-	Seminar	1	0.2	27/05/2024	Prof.	Y
Based Planning					Bruno	
and Control for					Siciliano	
Multi-Limbed						
Walking Robots						
Simultaneous	Seminar	1	0.2	21/06/2024	Prof.	Y
Perception and					Bruno	
Manipulation					Siciliano	
-Further	Research		3.2	01/05/2024 -		
implementation				30/06/2024		
of compliant				0 0, 0 0, 2021		
non-prehensile						
passive pushing						
simulation and						
preparation of						
the related paper						
-Laboratory						
•						
activity:						
experiments for						
object pose						
estimation on a						
tray through						
vision and force						
at PRISMA LAB						
"Teoria dei	Tutorship	12	2.4	01/05/2024 -	Prof.	
sistemi"				30/06/2024	Fabio	
(Dynamic					Ruggiero	
systems theory):						
-Block diagram						
algebra						
-High-pass filter,						
Bode diagrams						
exercise						
-Z-transform for						
discrete time						
LTI systems						
-Transfer						
function and step						
response for						
discrete time						
systems						
-Finite Impulsive						
Response (FIR)						
systems;						
Sampled data						
systems: sampler						
and holder						
and noidel		1	l .			

Cycle: XXXIX **Author: Francesco Cufino**

-Sampled data						
systems: state-						
space						
representation,						
transfer function						
representation,						
eigenvalues						
mapping						
SIDRA 2024	Course	30	6	08/07/2024 -	Prof.	Y
	Course	30	O	13/07/2024		1
PhD Summer				13/0//2024	Claudio	
school:					Melchiorri	
-Introduction to					and Prof.	
the Analysis and					Maria	
Control of					Elena	
Nonlinear					Valcher	
Systems						
(lecturer: Prof.						
Lorenzo						
Marconi)						
-Data-driven						
control design						
(lecturers: Prof.						
Claudio De						
Persis, Prof.						
Pietro Tesi)						
-Paper	Research		4	01/07/2024 -		
Compliant Non-				31/08/2024		
prehensile						
Pushing						
Manipulation						
completed and						
ready to be						
submitted						
	Research		10	01/09/2024 -		
-Paper	Research		10			
Compliant Non- Prehensile				31/10/2024		
Pushing						
Manipulation						
internally						
revised and						
submitted						
-Study of the						
state of the art of						
wheelchair						
pushing through						
mobile						
manipulator						
-Tested in						

PhD in Information Technology and Electrical Engineering

Cycle: XXXIX

Author: Francesco Cufino

			1
simulation direct			
and indirect			
adaptive control			
for wheelchair			
pushing			
-Contribution			
for review of a			
paper for			
Robotics and			
Automation			
Letters (RAL)			

- 1) Courses, Seminar, Doctoral School, Research, Tutorship
- 2) Choose: Y or N

2.1. Study and training activities - credits earned

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	4	0.2	5.8	0	10
Bimonth 2	3	0.2	6.8	0	10
Bimonth 3	0	0.2	9	0.8	10
Bimonth 4	4	0.4	3.2	2.4	10
Bimonth 5	6	0	4	0	10
Bimonth 6	0	0	10	0	10
Total	17	1	38.8	3.2	60
Expected	30 - 70	10 - 30	80 - 140	0 - 4.8	

3. Research activity:

Topic

The research activity carried out in the current year is about non-prehensile manipulation applied in service robotics for healthcare.

Service robotics for healthcare has the goal to assist either healthcare personnel or patients executing tasks like transporting sanitary material. Integrating robots in non-structured human-centered environment like hospital requires enabling two fundamental skills: human-like dexterous manipulation abilities and compliant, and potentially safe, physical human-robot interaction.

For what concerns the manipulation, it is widely recognized that the most advanced and versatile manipulative actions are performed using non-prehensile techniques, useful for manipulating items that are too large or must be brought outside the robot's workspace. Non-prehensile manipulation circumvents the difficult problem of grasping an object and jointly exploits frictional, gravity, and inertial forces. The focus of this work is on pushing manipulation. Several non-prehensile pushing techniques have been proposed in the past, although the possibility of deploying these in a human-populated environment remained largely unexplored. This requires a safe human-robot interaction, so it

PhD in Information Technology and Electrical Engineering

Cycle: XXXIX

Author: Francesco Cufino

has been investigated how to execute non-prehensile pushing manipulation task with a robot able to exhibit a compliant and passive behaviour while performing its task.

The considered illustrative case-study consists in a robot delivering by pushing a rack containing test tubes to a human operator to speed up their processing operation.

Methodology

The methodology developed is based on an extension of the non-prehensile pushing framework based on model predictive control (MPC) and complementarity constraints to allow using an impedance-controlled robot to execute a non-prehensile pushing task, while guaranteeing the passivity of the system. In the framework, the model with complementarity constraints is extended to command the impedance-controlled robot in such way it can realize at the same time a certain pushing force on the object while changing also the contact point sliding on the object edge if needed.

This MPC generates an optimal position/velocity set-point provided to the impedance-controlled robot which jointly realizes the force on the object, changes the contact point and exhibits spring-damper behaviour with respect to the external interactions. However, external interactions (possibly caused by a human) may prevent the manipulator from pushing the object along the desired trajectory, causing an increase of the tracking error. The consequence is that the MPC controller reacts to this generating an increase of the pushing force to compensate for it. This is a clearly undesired and a potentially harmful behaviour that can be physically interpreted as a (potentially unlimited) increase of the interacting system internal energy. To prevent this, in the control framework a virtual energy tank is included, which allows using the energy of the controlled system in a passivity preserving way. With the energy-tank filter, a passive version of the optimal velocity set-point is thus generated. As a result, when the passivity bound tends to be violated, the robot stops increasing the pushing force, keeping the energetic level constant, thus preserving the safety of the overall interacting system.

Results

The results of the developed framework have been obtained both in simulation and in real world experiments. The scenario consists of a robot manipulator equipped with a spherical/cylindrical-shaped end-effector and with an eye-in-hand camera, which pushes a box-shaped object along a desired trajectory. During the execution of the task, an external interaction due to a human operator occurs, hindering the motion. It has been shown that, in this circumstance, the compliant and passive behaviour is exhibited: the robot avoids increasing the pushing force when passivity is going to be violated, stopping the task execution, and resuming it when the motion is not hindered anymore.

4. Research products:

Scientific paper: Compliant Non-Prehensile Pushing Manipulation.

Authors: Francesco Cufino, Mario Selvaggio, Fabio Amadio, Fabio Ruggiero.

Journal: IEEE Transactions on Robotics.

Current state: **submitted.**

5. Conferences and seminars attended

6. Activity abroad

PhD in Information Technology and Electrical Engineering

Cycle: XXXIX

Author: Francesco Cufino

Integration of Compliant Non-Prehensile Pushing framework at ABB Research Center, Västerås, Sweden, from 3/12/2023 to 19/12/2023.

7. Tutorship

"Teoria dei sistemi" (Dynamic systems theory), 16 hours:

- Introduction to MATLAB.
- Exercises on diagonalization, Jordanization, power matrix, exponential matrix, stability with MATLAB.
- Block diagram algebra.
- High-pass filter, Bode diagrams exercise.
- Z-transform for discrete time LTI systems.
- Transfer function and step response for discrete time systems.
- Finite Impulsive Response (FIR) systems; Sampled data systems: sampler and holder.
- Sampled data systems: state-space representation, transfer function representation, eigenvalues mapping.