

Francesco Vitale

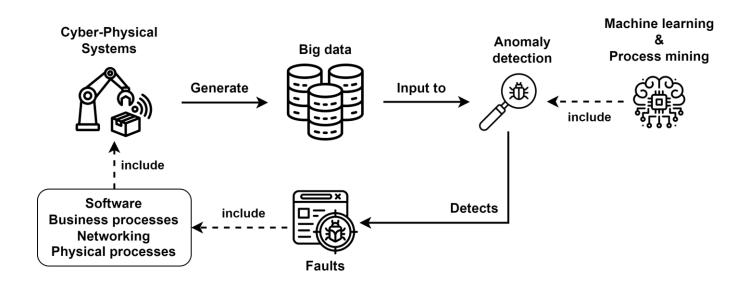
Combining Process Mining and Machine Learning for Anomaly Detection

Tutor: Prof. N. Mazzocca

Cycle: XXXVII

co-Tutor: Dr. F. Papa

Year: 2021/2022


My background

- BSc and MSc in Computer Engineering @ University of Naples Federico II
- PhD start date: 01/11/21 @ SECLab research group
- Company-funded scholarship with Hitachi Rail S.T.S. @ Automation Value Added Services unit^{P1}
- In-progress collaborations with several Italian and foreign universities
 - University of Messina (UNIME)^{J3}
 - University Campus Bio-Medico of Rome (UCBM)^{J4}
 - RWTH Aachen University (RWTH)^{J5}
 - Linnaeus University (LNU)^{J6}
- Period abroad at the Process and Data Science (PADS) group @ RWTH
 - Supervisor: Prof. Dr. Ir. W. M. P. van der Aalst
 - Start date: 01/02/23
 - End date: 31/07/23

Research field of interest

 Anomaly Detection (AD) with Machine Learning (ML) and Process Mining (PM) in Cyber-Physical Systems (CPSs)

Summary of study activities

Ad-hoc PhD courses

- IoT Data Analysis
- Using Deep Learning properly
- Cambridge Advanced C1

Study period abroad at the PADS group @ RWTH

 The group is specialized in PM algorithms, methodologies and employment in application domains

Visited the COSERITY lab @ UCBM

Held a seminar and started new collaborations

Research activity: The problem

- AD in CPSs requires addressing several layers of complexity
 - Software, business processes, networking, physical processes
- There is no one-size-fits-all solution
 - The blind application of ML and PM algorithms is not sufficient

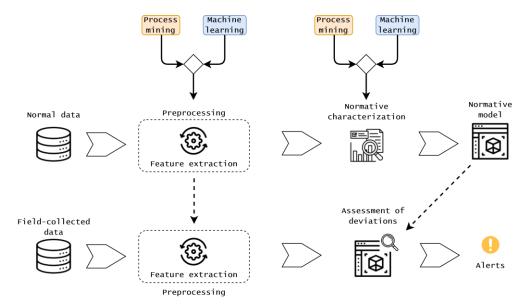
ML is suited for numerical data, e.g., time series

Clustering,
dimensionality
reduction, neural
networks, etc.

PM handles event logs, e.g., business process activities

Process discovery and conformance checking

The strengths of ML and PM can be combined for AD in CPSs



Research activity: The objective and methodology

Development of an overarching framework for AD in CPSs with ML and PM

Methodology:

- Address research gaps on AD in CPSs with PM by integrating ML;
- Compare results with similar approaches and assess strengths and weaknesses;
- Formalize the steps of the framework for specific data and domains.

- Preprocessing by feature extraction
- Normative characterization

6

Assessment of deviations

Future work

- Future work involves finalizing my contributions, formalizing the overarching framework, and developing new research directions, including:
- 1. Modeling and simulating CPSs by PM for implementing their Digital Twin and discover cyber attacks
- 2. Automatic response to anomalies for recovery towards acceptable conditions

Products

[J1]	A. De Benedictis, F. Flammini, N. Mazzocca, A. Somma, F. Vitale, "Digital Twins for Anomaly Detection in the Industrial Internet of Things: Conceptual Architecture and Proof-of-Concept," IEEE Transactions on Industrial Informatics, vol. 19, no. 12, pp. 11553-11563, 2023, https://doi.org/10.1109/TII.2023.3246983
[J2]	M. Cinque, L. De Simone, N. Mazzocca, D. Ottaviano e F. Vitale, "Evaluating Virtualization for Fog Monitoring of Real-time Applications in Mixed-Criticality Systems," Real-Time Systems, 2023. (accepted for publication)
[J3]	F. Vitale, F. De Vita, D. Bruneo e N. Mazzocca, "A Process Mining-based Unsupervised Anomaly Detection Technique for the Industrial Internet of Things." (submitted to Internet of Things (Netherlands), currently under minor review).
[J4]	S. Guarino, F. Vitale, F. Flammini, L. Faramondi, N. Mazzocca e R. Setola, "A Two-Level Fusion Framework for Cyber-Physical Anomaly Detection." (submitted to IEEE Transactions on Industrial Cyber-Physical Systems, currently under major review).

Products

[J5]	F. Vitale, M. Pegoraro, W. M. P. Van der Aalst e N. Mazzocca, "A Comparison Framework for Control-Flow Anomaly Detection in Event Logs of Information Systems." (submitted to IEEE Transactions on Knowledge and Data Engineering, currently waiting for first decision).
[J6]	F. Vitale, F. Flammini, M. Caporuscio e N. Mazzocca, "Combining Process Mining and Machine Learning for Direct Monitoring in Resilient Computer Systems." (in-progress)
[P1]	Prototype for anomaly detection in the height-stagger profile of trains' pantograph during their journeys (in-progress)

Thank you

Any questions?

