

Avinash Kumar Singh

Multifunctional Robot Hands

Tutor: Prof. Fanny Ficuciello

Cycle: XXXVII

Year: First

My background

- <u>M.Sc. degree</u>: **M.Sc. In Electrical Energy and Mobility Systems.**
- <u>Research group/laboratory</u>: **Interdepartmental Center for Advances in Robotic Surgery (ICAROS), Policlinico, Napoli.**
- <u>PhD start date</u>: **01.11.2021.**
- <u>Scholarship type</u>: UNINA.

Research field of interest

<u>Research field of interest</u>: **Mechanical design and sensorization of anthropomorphic multifunctional robotic hands and prosthesis.**

Summary of study activities

- Ad hoc PhD courses/schools:
 - Ad hoc course on Neural Networks by Sant'Anna, PISA.
 - COSER- PhD Summer school for Commonsense reasoning in surgical robotics by Università di Verona.
 - 2nd International Short school on Smart materials for optoelectronics applications by PULSE-COM, HORIZON-2020.

- <u>Conferences attended:</u>
 - Conference on New Technologies for Computer and Robot Assisted Surgery(CRAS 2022) held in Napoli, Italy.
 - Italian Institute of Robotics and Intelligent Machines (I-RIM 3D 2022) held in Rome, Italy.

Summary of study activities

• <u>Seminars attended:</u>

- The era of human robot collaboration: Deep sea exploration by Prof. Oussama Khatib, Director of Stanford Robotics Lab.
- The learning landscape in deep neural networks and its exploitation by learning algorithms by Prof. Riccardo Zecchina, Department of Computing Sciences, Università Bocconi, Milano, Italy.
- IEEE Authorship and Open Access Symposium: Tips and Best Practices to Get Published from IEEE Editors by IEEE.
- Using Delays For Control by Prof. Emilia Fridman, School of Electrical Engineering -Tel Aviv University.
- Symbiotic Control of Wearable Soft Suits for human motion assistance and augmentation by Prof. Lorenzo Masia, Chair in "Biorobotics and Medical Technology", Heidelberg University, Germany.
- Vine robots: design challenges and unique opportunities by Dr. Nicolas Naclerio by University of California Santa Barbara, USA.
- Surgical Robotics by Prof Alberto Arezzo, Department of Surgical Sciences University of Turin.
- Exoskeletons by Dr. Stefano Dalla Gasperina, Dr. Francesca Dell 'Eva, TU Delft, Politecnico Milano.

- Problems:
 - Universal Broad Problems:
 - Upper limb amputation.
 - Managing daily life activities.
 - Social Isolation.

• Problems:

- Narrow Detailed Problems:
 - Heavyweight robotic hand structure.
 - Precise robotic grasping abilities.
 - Abilities of robotic hand to grasp objects of any orientations.
 - Precise In-hand Manipulation after successful grasps.

• Problems and Solutions:

Heavy weight structure	Solution	Underactuation + Lightweight Material
Precise Robotic Grasping abilities	Solution	EMG based control
Object grasping of any dimension	Solution	Force control exploiting position control
Precise In-hand Manipulation	Solution	Fingertip Tactile sensing control

• <u>Methodology</u>:

Underactuation + Lightweight Material	Scientific approach	Prisma Hand II (3 ► Motors) + use of 3D printed/biomaterials
EMG based control	Scientific approach	EMG sensors + EMG decoding
Force control exploiting position control	Scientific approach	Optoelectronic sensors + Neural Network application(achieved)
Fingertip Tactile	Scientific approach	Voltage control of each taxel of sensors to determine safe/unsafe contact point

Products

[P1]	Participation and winner of 5 th position in Start cup Campania for Prisma		
	Hand II.		
	Paper accepted for IRIM 2022 conference:		
[P2]	An optimized tactile sensing technology built for an anthropomorphic robotic		
	hand by Avinash Kumar Singh, Petros Kaltsas, Fanny Ficuciello		
	Journal under review for IEEE Robotics and Automation Letters (RA-L):		
[P2]	In-hand manipulation with an anthropomorphic robot hand using a		
	combination of reconstructed forces and raw data from an optimized tactile		
	sensing technology by Avinash Kumar Singh, Massimiliano Pinto, Petros		
	Kaltsas, Salvatore Pirozzi, Fanny Ficuciello.		

Next Year Vision

- Optimisation in construction of Prisma Hand structure with advanced and lightweight materials.
- Utilisation of all 5 fingertip sensors for enhanced in-hand manipulation and force control + Slip detection (Possibility for application of Discrete wavelength transformation [DWT] or covariance methods or relative algorithms.)
- **Precise EMG decoding methods to move the hand** using EMG sensors (Exploration of neural network application to predict the movements.)
- **Construction of a prosthetic wrist and socket** compatible with Prisma Hand II.

Thank you for listening!

