

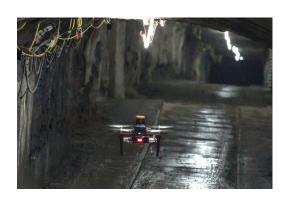
Vincenzo Scognamiglio Autonomous Navigation in GPS-denied Environment

Tutor: Prof. Vincenzo Lippiello

co-Tutor: Eng. Alessandro Massa (Leonardo S.p.A.)

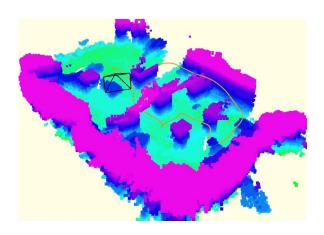
Cycle: XXXVII Year: First

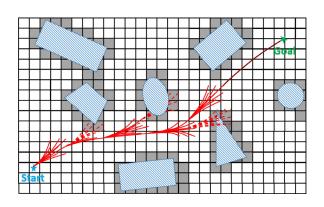
My background


- M.Sc. in Automation Engineering, Università degli Studi di Napoli Federico II (Sep 2021)
- Group: Aerial Robotics of Prisma Lab
- PhD Start Date: 1st November 2021
- Scholarship Type: Company-funded
- Partner Company: Leonardo S.p.A.

Research field of interest

- **Objective:** Develop a navigation framework to allow mobile robots to navigate fully autonomous in GPS-denied environment.
- Why: In most application where robots are implemented, they cannot have access to GPS-signal.
- Why Drones applications: they are widespread in several contexts, and they mostly suffer of the lack of GPS-signal.





Research field of interest

- In a complex and often unknown environment, robots have to percept what there is around them, in this way they can localize themselves.
- Once they know where they are, it is time to plan movements to accomplish defined tasks

Summary of study activities

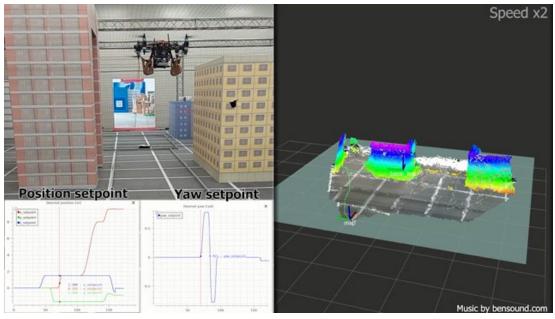
- Ad hoc PhD courses / schools:
 - "Neural Networks and Deep Learning", Lecturer: Prof. G. Buttazzo, Scuola Superiore Sant'Anna: the course focuses on the theoretical foundations of neural networks and deep learning and presents practical implementation issues.
 - "IEEE RAS Summer School On Multi-Robot Systems 2022", Organizer: Czech Technical University, Prague: the summer school covers all the topics related to autonomous navigation of multi-robot systems. During this school they give us the opportunity to do practical flight tests.
- Conferences / events attended:
 - "Leonardo Drone Contest", Organizer: Leonardo S.p.A., Torino: Contest between six Italian universities, the goal was to fly with a drone in a city-like scenario without GPS-signal.

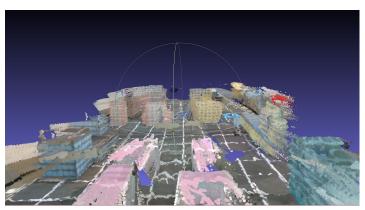
Research activity: Overview

Problem

The main problem when we are in a GPS-denied environment is the localization of the agent. To move in order to do specific tasks, it has to known where is located and where are located possible obstacles.

Objective


To define a complete framework which let a mobile robot to achieve autonomous navigation without GPS-signal


Methodology

After studied the state of the art, SLAM problem (Simultaneus Localization and Mapping) has been recognized as playing a crucial role for the localization task. Some SLAM algorithms have been implemented (RTAB-Map and ORB-SLAM2), firstly on bench using different sensors and then on board a drone.

Research activity: Overview

Research activity: Overview

Problem

Fault Detection and Isolation of an actuator in an aerial robot

Objective

To investigate an accurate estimator of faults in actuator of a drone to allow Fault Tolerant Control (FTC)

Methodology

We devised a data-driven estimator, and we are comparing this technique with others model-based. We started implementing a simulation using Simulink.

Next Year

- Improve the robustness of the implemented techniques.
- Work on quality of the mapping process to recognize better the obstacles.
- Explore new families of sensors (lidar, laser, etc...).
- Test the system in different scenarios.
- Study and implement SLAM on multi-robot systems.

