

Alberto Moriconi An automatic methodology for the synthesis of approximate circuits

Tutor: Prof. Nicola Mazzocca Cycle: XXXVII Year: 2022

My background

- MSc degree: Computer Engineering
- Research group/laboratory: Seclab / Embedded systems laboratory
- PhD start date: 1/11/2021
- Scholarship type: Not funded

Research field of interest

- Amount of data to be processed is increasing, power consumption concerns are becoming increasingly critical.
- Approximate computing is a possible approach: we "gently" relax, in a controlled way, correctness requirements of specific applications (especially iterative or strictly tied to human perceptual limitations).
- In this way we can obtain area, time or power consumption advantages.

Summary of study activities

- Attended specific seminars on machine learning and deep learning applications
- Attended an ad-hoc course on virtualization technologies
- Attended and gave a technical presentation at:
 - AxC 21 workshop on approximate computing
 - IWES 2022 workshop on embedded systems

Research activity: Overview

- Problem (of your own research activity) Devise an automatic and general methodology for the synthesis of approximate circuits.
- Objective

Provide an open-source implementation of a methodology that improves the current state-of-the-art for approximate combinatorial circuits synthesis.

Methodology

Our methodology, based on the application of multi-objective combinatorial optimization to optimally selected cuts of combinatorial circuits, has been applied to well-known circuital benchmarks (i.e. real circuits used to test conventional synthesis suites), and the results has been compared to other approximation approaches.

Products

	Barbareschi, M., Barone, S., Mazzocca, N., & Moriconi, A. (2022). A Catalog-
[P1]	based AIG-Rewriting Approach to the Design of Approximate Components. IEEE
	Transactions on Emerging Topics in Computing. (Journal paper, published, early
	access)
[P2]	Barbareschi, M., Barone, S., Mazzocca, N., & Moriconi, A. (2022). Design Space
	Exploration Tools. In Approximate Computing Techniques (pp. 215-259). Springer,
	Cham. (Book chapter, published)
[P3]	Barbareschi, M., Barone, S., Mazzocca, N., & Moriconi, A. Towards Catalog-based
	AIG-Rewriting
	Approximate Technique Based FPGA Synthesis (Journal paper, submitted)
[P4]	Barbareschi, M., Barone, S., Casola, V., Montone, P., & Moriconi, A. A Memory
	Protection Strategy for Resource Constrained Devices in Safety Critical
	Applications. The 6th International Conference on System Reliability and Safety.
	(Conference paper, accepted)
[P5]	PyAls (https://github.com/SalvatoreBarone/pyALS). Open source implementation

of the methodology presented in the articles.

Next year

- Extend our methodology to sequential circuits, ensuring relevant time-dependant properties are not violated.
- Find alternatives to currently used heuristics (AMOSA) that can reduce synthesis running time.
- Integrate our methodology in system-level approximation suites such as IIDEAA.
- Applications of the methodology (especially to accelerators in real-time systems).

