

Year: First

Vincenzo Maisto Innovative Computing Architectures for Green Computing

Tutor: Alessandro Cilardo Cycle: XXXVII

Presentation organization

- CONTENT
 - Cover
 - Your background
 - Graduation MS, DIETI group, cooperations
 - Type of fellowship (University, company-funded, etc.)
 - Your research field
 - Specific (1 minute)
 - Summary of study activities
 - Courses attended, schools, seminars, etc.
 - Your research activity (3 minutes)
 - idea, methodology, developments, expected results, validation
 - Your products
 - List papers, tools, awards (if any), etc.
 - Tutorship
 - list courses of tutorship activities authorized by ITEE Board)
 - Next year

My background

- MSc degree: Computer Engineering at UNINA
- Research group/laboratory: SECLAB
- PhD start date: 1st January 2022
- Scholarship type: MUR PON
- Partner company under DM 1061: A3cube Inc.

Research field of interest

- High Performance Computing Architectures
- Hardware/Software Co-design on MPSoCs
 - FPGAs
 - Edge-class
 - Server-class
- Cutting-edge technologies
 - Quantum Computers

Summary of study activities

- Ad hoc PhD courses / schools:
 - Virtualization Technologies and their applications, ITEE, UNINA;
 - Big Data Analytics and Architectures, ITEE, UNINA;
 - Academic Entrepreneurship, DII, UNINA.
- Courses borrowed from MSc curricula:
 - Introduction to Quantum Circuits, DIETI, UNINA;
 - Quantum Information, DIETI, UNINA.
- Conferences / events attended:
 - DATE 2022;
 - National Workshop for Technology Transfer and Higher Education 2022;
 - QUATIC 2022.

Research activity: Overview

Problem:

- **1.** Acceleration of industrial and scientific computing workloads
- 2. Energy consumption of both:
 - Large-scale Big Data processing in HPC platform
 - Ubiquitous edge computing
- **3. Technologically heterogeneous** computing architectures
 - FPGAs
 - MPSoCs
 - Al co-processors
 - Distributed storage and computing
 - Quantum computers
 - GPUs
 - ..

Objective:

- Innovative computing architectures
- Novel integration methodologies
- Use of cutting-edge technologies
- Energy efficiency by design

Research activity: Overview

Methodology:

- **1. State-of-the-art** of the acceleration methodologies and cutting-edge technologies
 - Al co-processors
 - High Level Synthesis
 - Dynamic Partial Reconfiguration
 - Distributed computing
 - High Bandwidth Memories
 - .
- **2.** Evaluation and analysis of modern hardware computing platforms and software stacks
 - <u>Xilinx ZCU102</u>, Intel Arria10, Intel Agilex, Xilinx Alveo, *Quantum Computers**,...
 - <u>Vitis-AI</u>, Intel OPAE, OpenCL, ...
- 3. Hardware/software co-design of innovative architectures

Hardware system and interfaces Software drivers and libraries

Products

[P1]	V. Maisto and A. Cilardo (2022).
	"A Pluggable Vector Unit for RISC-V Vector Extension",
	doi: 10.23919/DATE54114.2022.9774501
	[published]
[P2]	Cilardo, A., Maisto, V., Mazzocca, N., Rocco di Torrepadula, F. (2022).
	"A Proposal for FPGA-Accelerated Deep Learning Ensembles in MPSoC Platforms
	Applied to Malware Detection".
	doi: https://doi.org/10.1007/978-3-031-14179-9_16
	[published].
[P3]	Cilardo, A., Maisto, V., Mazzocca, N., Rocco di Torrepadula, F
	"An approach to the systematic characterization of multitask accelerated AI inference in
	edge MPSoCs"
	[Submitted on October 31 st , 2022, to ACM TECS (Transactions on Embedded Computing
	Systems)]

Plans for Next Year

- First year:
 - Transversal study of all technologies
 - Experimental focus on edge-class platforms and AI workloads
- Next year:
 - 1st part: experimental focus on server-class platforms and datacenter workloads
 - 2nd part: **abroad collaboration** on innovative computing paradigms and architectures
 - 3rd part: begin the synthesis of a **structured proposal** for the new era of heterogeneous computing platform

Thank you for the attention!

