

Daniele Lombardi Design of secure IoT devices: ensuring security by PUF

Tutor: Prof.ssa Valentina Casola Cycle: XXXVII

Year: Second

My background

- MSc degree: Computer Engineering
- Research group/laboratory: RFI / SecLab
- PhD start date: 01.01.2022
- Scholarship type: None
- Research fellowship, founded by Rete Ferroviaria Italiana S.p.A.

Research field of interest

- My research activity involves the analysis and design of innovative solutions for **secure critical infrastructure** (e.g. diagnostic unit).
- Particularly, during the second year, I was concerned with figuring out how to ensure security at the **lowest levels** of a typical IoT infrastructure.

Research field of interest

- The **problems identified** are many and relate to:
 - lack of cryptography;
 - use of weak passwords;
 - lack of robust authentication;
 - inappropriate keys management;
 - counterfeiting of devices;
 - 0 ...
- Physical Unclonable Functions are one of the most promising enabling technologies to solve many of these problems.

Research activity A1: Overview (1)

Problem

- Ensuring the security of IoTbased applications that are generally characterized by:
 - Large numbers of nodes;
 - Devices poorly equipped in terms of resources (no asymmetric cypher);
 - Lack of security in exchanged data.

• Objective

 Define schemes for the management of symmetric cryptographic keys, suitable for resource-poor devices in IoT, in order to guarantee *confidentiality, integrity* and *authentication* of data exchanged in both <u>end-to-end</u> and <u>group</u> communications.

Research activity A1: Overview (2)

- Methodology
 - I. Design a family of solutions characterize d by:
 - Low overheads;
 - Use of innovative and safe primitives (PUF);
 - Use of simple operations (XOR);
 - **II. Compare** the proposals with existing s olutions w.r.t.
 - Computiational costs;
 - Comunication costs;
 - Scalability;
 - Execution times.

information technology electrical engineering

Summary of study activities

Seminars:

- 6, mainly related to security issues and PUF

Conferences / events attended:

- 9th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI 2023)
- 14th IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2023)
- International Security Challenge PUF-enabled Security Challenge (CSAW'23), selected as finalist

- Research Areas:

- A1: Data security of IoT-based applications
- A2: Design of critical systems

Products for Activity A1

Data security of IoT-based applications

	<u>Title</u> : Lightweight Secure Keys Management Based on Physical Unclonable Functi
[W1]	ons
	<u>Authors</u> : M. Barbareschi, V. Casola, D. Lombardi . <u>Workshop</u> : IWASI 2023, The 9th
	IEEE International Workshop on Advances in Sensors and
	Interfaces. <u>Status</u> : published
[C2]	Title: Ensuring End-to-End Security in Computing Continuum Exploiting Physical
	Unclonable Functions
	Authors: M. Barbareschi, V. Casola, D. Lombardi. Conference: CLOUDCOM 2023,
	The 14th IEEE International Conference on Cloud computing technology and
	science, Secure Cloud Continuum. <u>Status</u> : published
[13]	Title: A Lightweight PUF-based Protocol for Dynamic and Secure Group Key
	Management in the IoT
	<u>Authors</u> : M. Barbareschi, V. Casola, A. Emmanuele, D. Lombardi . <u>Journal</u> : IEEE
	Internet of Things Journal. <u>Status</u> : submitted.

Products for Activity A2

Design of critical systems

[P1]	<u>Title</u> : <i>Non-intrusive Testing of RfiOS</i> <u>Authors</u> : S. Barone, S. Della Torca, D. Lombardi. <u>Type</u> : Deliverable on Testing of rt-critical system. <u>Project</u> : Joint Project between DIETI and RFI on rt-critical systems design. <u>Status</u> : Released.
[P2]	<u>Title</u> : <i>MngSCC</i> <u>Authors</u> : F. Bianco, A. Emmanuele, S. Della Torca, D. Lombardi. <u>Type</u> : Deliverable on Design and development of software in rt-critical systems (entire lifecycle). <u>Project</u> : Joint Project between DIETI and RFI on rt-critical systems design. <u>Status</u> : Released.
[P3]	<u>Title</u> : <i>Mechanisms of redundancy in 2x2002 systems</i> <u>Authors</u> : A. Emmanuele, M. Gaudino, D. Lombardi , D. Marcello. <u>Type</u> : Deliverable on Design and development of software in rt-critical systems (entire lifecycle). <u>Project</u> : Joint Project between DIETI and RFI on rt-critical systems design. Status: Under development.
[C4]	Title: Automatic Test Generation to Improve Scrum for Safety Agile MethodologyAuthors: M. Barbareschi, S. Barone, V. Casola, S. Della Torca, D. LombardiConference:ARES2023,The18thInternationalConference:Published
[C5]	<u>Title</u> : <i>Timing Behavior Characterization of Critical Real-Time Systems through Hybrid Timing Analysis</i> <u>Authors</u> : S. Barone, V. Casola, S. Della Torca, D. Lombardi <u>Conference</u> : 7th International Conference on System Reliability and Safety. <u>Status</u> : Published.

