

Vincenzo Lanzetta

Deep learning methods for analysis and prediction of financial data

Tutor: Prof. R. Prevete Cycle: XXXVII

Year: second

My background

- MSc degree: Chemistry
- Second MSc degree (to be completed 4 exams left): Statistics
- laboratory: AIPA
- PhD start date: November 1, 2021
- Scholarship type: no scholarship

Research field of interest

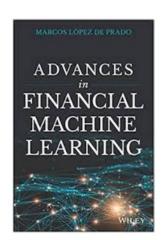
Deep learning methods in Finance

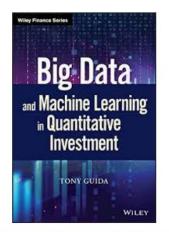
Summary of study activities

	Courses	Seminars	Research	Tutorship	Total
Total (year 1 + year 2)	31	10,2	78	0	119,2
Expected (year 1 + year 2 + year 3)	30 - 70	10 - 30	80 - 140	0 – 4.8	180

2nd year PhD courses:

- Using deep learning properly
- English B2 (CLA-Unina)




Research activity: Deep Learning for financial markets predictions (1/4)

Problem:

Financial industry demands for new methods aimed at capturing non-linear relationships, in the financial market data, for prediction purposes

•<< A key argument for applying ML techniques to financial problems is that ML methods capture nonlinear relationships [28] in the data.>>[*]

- •<< the literature regarding financial market prediction using machine learning is vast>> [**]
- •<<there is a wide range of ML techniques being successfully applied to many areas in the development of quantitative investing strategies[*]

Objective

Development of new deep learning approaches for financial market prediction

Research activity: Deep Learning for financial markets predictions (2/4)

Methodology

- 1. A systematic review on approaches for financial market predictions, with a focus on Transfer Learning (TL) ones
- 2. Experimenting several Machine Learning methods to perform financial markets predictions

Research activity: Deep Learning for financial markets predictions – review step - (3/4)

	predictions review ste	3 (3/4)		
Sys	tematic approach of the conducted review			
1	Definition of filters (years, subject area, search words)			
2	Defining the data extraction form (problem taxonomy, dataset characteristics,)	Challenges and future directions		
3	Conducting the systematic research	Number of domains for pre-training		
4	Summary of the reviewed papers	step		
5	Answer to research questions	Factors influencing the selection of source domain data		
6	Conclusions	Possible error propagation issue due to sequential training Impact of different learning mechanism on TL performance		
7	Experimenting on financial market predictions			
	Main results			
Transfer Lea	arning (TL) for accelerating training	TL within the explainable Artificial		
TL for over-	fitting problem	intelligence framework		
TL for dis	covering asymmetric causal structure between omains			
TL for over	coming data scarcity issue			

Name Surname 7

Research activity: Deep Learning for financial markets predictions – experimenting step - (4/4)

Tested dataset				
1	Daily index market data			
2	Daily stock data			
3	Daily Forex data			
4	Hourly index market data			
5	Hourly Forex data			

Experimented ML Techniques				
1	Feed Forward NN			
2	CNN			
3	LSTM			
4	CNN-LSTM			
5	XGBoost			

- AUD.USD
- 1 hour timeframe
- 1 step ahead to be predicted
- 2285 data to be predicted (from 00:00:00 of jan 17 2023 to 21:00:00 of jun 14 2023)
- class 1 = 20 %; class 0 = 80 %
- BUY threshold = +0.09%
- Probability cut-off for class 1 signal = 0.52 (i.e.: 52%)

Results on an unbalanced "out of bag" dataset (2287 hourly data to be predicted, from jan 23 to jun 23)

- Actual frequency of class 1 = 20%
- •Precision of predictions for class 1 = 26%

our Al works rationally, as its precision (26%) is better than the one of an irrational predictor (20%) that makes predictions by always predicting the same class

Products (1/2) – Startup/Spin-off project

← → C ▲ Not secure | predictionlabs.ai/login

Stock Signals

SIGNAL TIME	Stock	Difference in time in minute	Starting Time	Closing Time	Target price	Take profit price	Stop loss price	Probability Prediction for Class 1	SUGGESTED STRATEGY
17/07/2023, 09:01:00	AUD_USD	60	17/07/2023, 09:00:00	17/07/2023, 10:00:00	0.68005	0.680662	0.679438	0.53	BUY

Products (2/2) – Campania Start Cup Competition of 7 Campania's universities

PredictionLabs.ai has been selected for the regional final

Results – Work in Progress paper

Title	Status		
Transfer learning for financial data predictions: a systematic review	Completed (to be submitted)		

Next year plan

2 Publications - on journals to be defined - on the following topics:

- Deep Learning for financial markets predictions
- New neural network methods for what-if policy analysis on regional innovation data

Developing PredictionLabs.ai, with respect to following options:

- seed capital/business angels commitment
- establishment/recognition of the Spin Off qualification at our University
- Invitalia commitment (Smart&Start measure)

Research periods abroad:

Spending a period abroad to start an international collaboration

Thank you for your attention

