

Vincenzo Lanzetta

Deep learning methods for scenario analysis and predictions of complex systems

Tutor: Prof. R. Prevete Cycle: XXXVII Year: third

- MSc degree: Chemistry
- Second MSc degree (to be completed 4 exams left): Statistics
- laboratory: AIPA
- PhD start date: November 1, 2021
- Scholarship type: no scholarship

Summary of study activities

	Courses	Seminars	Research	Tutorship	Total
Total	31	11	138	0	180
Expected	30 - 70	10 - 30	80 - 140	0 – 4.8	180

Topic's relevant PhD courses:

- Machine Learning for Science and Engineering Research
- Using deep learning properly
- Statistical data analysis for science and engineering research

PhD thesis overview

• Problem statement:

Deep Learning methods for scenario analysis and predictions of complex systems.

• Objective:

Specific complex research areas, and main results

Financial markets: not linear interactions and dependencies.

Social systems: influenced by socioeconomic, cultural, and political factors.

Main results	Main results
Filling the gap for review lack on TL(*) for financial predictions	Filling the gap between theory and adopted tools for policies purposes
Insights on TL potentiality by experimenting	A new methodology for overcoming issues of current tools

Торіс	Details
Part I – Transfer	Problem and objective
Learning for complex systems	What emerges from literature
predictions, with	Literature gap and research questions
focus on financial market	Methodology
	Results
Part II – Neural	Problem and objective
Network as tool for scenario analysis.	What emerges from literature
with focus on	Literature gap and research questions
complex social systems	Methodology
	Results

Торіс	Details
Part I – Transfer	Problem and objective
Learning for complex systems	What emerges from literature
predictions, with	Literature gap and research questions
focus on financial market	Methodology
	Results
Part II – Neural	Problem and objective
Network as tool for scenario analysis.	What emerges from literature
with focus on	Literature gap and research questions
complex social systems	Methodology
,	Results

Part I – problem and objective

Problem:

Financial industry demands for new methods aimed at capturing non-linear relationships, in the financial market data, for prediction purposes

Objective

Reviewing and experimenting TL approaches for financial market predictions

(*) S. Emerson et al., 2019 (**)B. M. Henrique et al., 2019

Торіс	Details
Part I – Transfer	Problem and objective
Learning for complex systems	What emerges from literature
predictions, with	Literature gap and research questions
focus on financial market	Methodology
	Results
Part II – Neural	Problem and objective
Network as tool for scenario analysis,	What emerges from literature
with focus on	Literature gap and research questions
complex social systems	Methodology
,	Results

Part I – what emerges from literature

Financial market data

Depending on fundamentals, noise and news

Not linear in nature

ML(*) is better then traditional statistical methods for predictions

Neural Network as main ML tool for financial predictions

TL as a potential useful tool

Торіс	Details
Part I – Transfer	Problem and objective
Learning for complex systems	What emerges from literature
predictions, with	Literature gap and research questions
focus on financial market	Methodology
	Results
Part II – Neural	Problem and objective
Network as tool for scenario analysis,	What emerges from literature
with focus on	Literature gap and research questions
complex social systems	Methodology
,	Results

Part I – literature gap and research questions

Literature gap

Lack of literature reviews focused on TL for financial predictions

Research questions

1) How TL has been applied for financial market predictions?

2) Which are challenges and potential future directions of TL for financial market predictions?

Торіс	Details
Part I – Transfer	Problem and objective
Learning for complex systems	What emerges from literature
predictions, with	Literature gap and research questions
focus on financial market	Methodology
	Results
Part II – Neural	Problem and objective
Network as tool for scenario analysis,	What emerges from literature
with focus on	Literature gap and research questions
complex social systems	Methodology
,	Results

Part I - methodology

<u>Methodology</u>

1) A systematic review on TL approaches for financial predictions

Systematic approach of the conducted review			
1	Definition of filters (years, subject area, search words)		
2	Defining the data extraction form (problem taxonomy,)		
3	Conducting the systematic research		
4	Summary of the reviewed papers		
5	Answer to research questions		
6	Conclusions		

2) **Experimenting** ML methods to perform financial predictions

Торіс	Details
Part I – Transfer	Problem and objective
Learning for complex systems	What emerges from literature
predictions, with	Literature gap and research questions
focus on financial market	Methodology
	Results
Part II – Neural	Problem and objective
Network as tool for scenario analysis,	What emerges from literature
with focus on	Literature gap and research questions
complex social systems	Methodology
	Results

Part I – results (reviewing step)

Main results
TL for accelerating training
TL for over-fitting problem
TL for discovering asymmetric causal structure between domains
TL for overcoming data scarcity issue
Challenges and future directions
Number of domains for pre-training step
Factors influencing selection of source domain data
Possible error propagation issue due to sequential training
Impact of different learning mechanism on TL performance
TL within the explainable Artificial intelligence framework

Part I – results (experimenting step)

Actual frequency of class 1 = 52%

Precision of predictions for class 1 = 64%

our Al works rationally, as its precision (64%) is better than the one of an irrational predictor (52%) that makes predictions by always predicting the same class

e on BUY signal for SPY: Class 1 means a price percentage increase > + 0,60% (+0,60% is the trained threshold) for current daily with respect to previous 1 day bar close price

Part I – results (products)

Products:

1) Paper (completed, to be submitted): <<Transfer learning for financial data predictions: a systematic review>> (arXiv:2409.17183)

2) Startup/Spin-off project: PredictionLabs.ai

← → C ▲ Not secure | predictionlabs.ai/login

Stock Signals Difference Take Stop Probability in time in Target Prediction SIGNAL Starting Closing profit loss SUGGESTED TIME minute Time Time price price for Class 1 STRATEGY price Stock 17/07/2023, AUD_USD 60 17/07/2023, 17/07/2023, 0.68005 0.680662 0.679438 0.53 BUY 09:01:00 09:00:00 10:00:00

Торіс	Details
Part I – Transfer	Problem and objective
Learning for complex systems	What emerges from literature
predictions, with	Literature gap and research questions
focus on financial market	Methodology
	Results
Part II – Neural	Problem and objective
Network as tool for scenario analysis.	What emerges from literature
with focus on	Literature gap and research questions
complex social systems	Methodology
	Results

Part II – problem and objective

Problem:

Need for new AI-based methods for policies options purposes, to capture complexity behind regional innovation

Objective

Emergence of regional innovation **New methodological approaches** to grasp intrinsic complexity of regional innovation capability

Торіс	Details
Part I – Transfer	Problem and objective
Learning for complex systems	What emerges from literature
predictions, with	Literature gap and research questions
focus on financial market	Methodology
	Results
Part II – Neural	Problem and objective
Network as tool for scenario analysis,	What emerges from literature
with focus on	Literature gap and research questions
complex social systems	Methodology
	Results

Part II - What emerges from literature (1/3)

Regions as locus of innovation

Source: OECD (2011) Regions and Innovation Policy, OECD publishing, Paris based on Garcilazo, E. and J. Oliveira Martins (2010), "The Contributions of Regions to Aggregate Growth", paper presented to the Annual ERSA Conference, Stockholm, August 2010.

Part II - What emerges from literature (2/3)

Part II - What emerges from literature (3/3): claims

- 1. EURIS as tool for over-time analysis of innovation indicators, and **not for policies formulation**
- 2. Need to **complement EURIS with a new tool** for what-if policy options

Торіс	Details			
Part I – Transfer	Problem and objective			
Learning for complex systems	What emerges from literature			
predictions, with focus on financial market	Literature gap and research questions			
	Methodology			
	Results			
Part II – Neural Network as tool for scenario analysis.	Problem and objective			
	What emerges from literature			
with focus on	Literature gap and research questions			
complex social systems	Methodology			
	Results			

Part II - literature gap and research questions

Research questions

- 1) Which is the belonging cluster of each region?
- 2) What are the most effective policies for each region?

Торіс	Details			
Part I – Transfer	Problem and objective			
Learning for complex systems	What emerges from literature			
predictions, with focus on financial market	Literature gap and research questions			
	Methodology			
	Results			
Part II – Neural Network as tool for scenario analysis, with focus on complex social systems	Problem and objective			
	What emerges from literature			
	Literature gap and research questions			
	Methodology			
	Results			

Part II – Methodology (1/3)

Part II – methodology (2/3)

Theoretical criteria for methodology selection

Regions grouping task	Theoretical criteria of ideal methodology	Suitable solution
Considering complexity of the innovation process	Not linear modelling	Clustering
Overcoming the information redundancy due to correlations	Grouping regions on latent variables, not correlated by costruction	Joint dimension reduction and clustering of data

Factorial K-means (FKM) - while reducing original variables to a minimal number of uncorrelated latent variables - develops dense clusters (*)

(*) minimum "within" variance of the clusters in the reduced space

FKM detailed task	Theoretical criteria	Suitable solution
What-if tool for policy options	Neural Networks (*) for complex relationships between innovation latent factors and innovation labels	Complementing the EURIS with a FKM-NN tool

Торіс	Details			
Part I – Transfer	Problem and objective			
Learning for complex systems	What emerges from literature			
predictions, with focus on financial market	Literature gap and research questions			
	Methodology			
	Results			
Part II – Neural Network as tool for scenario analysis, with focus on complex social systems	Problem and objective			
	What emerges from literature			
	Literature gap and research questions			
	Methodology			
	Results			

Part II – results (1/11)

Values to be used as input parameters of FKM

(*) on standardized original variables

Part II – results (2/11)

Meaning of FKM(*) latent variables

Variable scores:		
	Dim.1	Dim.2
1.1.2 Population with tertiary education	-0.1814	-0.0848
1.1.3 Population involved in lifelong learning	-0.1226	-0.3924
1.2.1 International scientific co-publications	0.1413	-0.2008
1.2.2 Scientific publications among the top 10% most cited	0.0260	-0.4246
1.3.2 Individuals with above basic overall digital skills	-0.1981	-0.3416
2.1.1 R&D expenditure in the public sector	0.6283	0.0470
2.2.1 R&D expenditure in the business sector	0.5583	-0.0758
2.3.2 Employed ICT specialists	-0.0916	-0.0013
3.2.2 Public-private co-publications	0.2782	-0.2327
3.3.1 PCT patent applications	0.2617	-0.3602
3.3.2 Trademark applications	-0.1005	-0.3239
3.3.3 Design applications	-0.0125	-0.2420
4.1.1 Employment in knowledge-intensive activities	0.1127	0.0894
4.3.2 Air emissions by fine particulates	0.0920	0.3718

Original variables scores on selected FKM principal components (PC)

Component	Meaning	Reason		
First	Level of R&D spending	Regions, that spend a lot on R&D, have positive and high values for first PC		
Second	Technical-scientific "lag" of individuals belonging to a region	Regions, whose individuals have low technical-scientific capacity, have a high value for second PC		
(*) FKM on standardized original variables				

Part II – results (3/11)

Centroids scores analysis on FKM adopted latent variables, to understand clusters features

through latent variables meaning

	Dim.1 Dim.2				
	Cluster 1 -0.6229 1.7000				
	Cluster 2 0.3154 0.0069				
	Cluster 3 -0.2612 -0.9912	Cluss			
	Cluster 4 1.4111 -2.4441	feature			
	Table 5: scores of cluster centroids	rures			
output_cluster from ClusPo	ca Centroids' scores suggestions				
ackage" result		•			
4	Maximum level of regional R&D expenditures and				
	minimum level of technical-sci	minimum level of technical-scientific "lag" of individuals			
	belonging to region				
2	Medium-Maximum level of re	Medium-Maximum level of regional R&D expenditures			
	and medium-maximum level of	technical-scientific "lag" of			
	individuals belonging to region	_			
3	medium-minimum level of regio	medium-minimum level of regional R&D expenditures and			
	medium-minimum level of technical-scientific "lag" of				
	individuals belonging to region	individuals belonging to region			
1	Minimum level of regional	R&D expenditures and			
	maximum level of technical-sci	maximum level of technical-scientific "lag" of individuals			
	belonging to region	belonging to region			

Used dataset (without label) for cluspca function in R:

р

Output_all_original_WITHOUT_C_VALUES_OR_EMPTY_VALUES_inserted_converted_label_without_Performance_Group.xlsx

Part II – results (4/11)

FKM clusters ranking(*)

	Dim.1	Dim.2		
Cluster 1	-0.6229	1.7000		
Cluster 2	0.3154	0.0069		
Cluster 3	-0.2612	-0.9912		
Cluster 4	1.4111	-2.4441		
Table 5: scores of cluster centroids				

Euclidean distance of cluster 2 and 3 – with respect to best in class cluster (number 4) – to define their ranking position

Innovation ranking among 4 clusters emerged by FKM

Assigned clus	ter	by	Innovation ranking among clusters	
our methodolo	ogy			
4			First position	
3			Second position	
2			Third position	
1			Fourth position	

based on centroids scores on FKM adopted latent variables and on meaning of FKM adopted latent variables 35

Labelling step

EURIS labels

Innovation leaders

Strong Innovators

Moderate innovators

Emerging innovators

Assigning EURIS label names to FKM clusters, according to FKM clusters ranking

Assigned cluster by	Innovation ranking among clusters	Final label assignment of our
our methodology		methodology
4	First position	Innovation leader
3	Second position	Strong innovator
2	Third position	Moderate Innovator
1	Fourth position	Emerging innovator

Developed a FKM "EURIS-based" labelled dataset!

Highlights on FKM capabilities

More cohesive regional groups for policymakers, with respect to the EURIS ones (*)

A NN what-if approach - on FKM "EURIS-based" labelled dataset – to define more targeted and effective policies !

(*) FKM develops a cluster allocation that minimizes the "within" variance of the clusters in the reduced space (Markos et al., 2019)

37

Part II – results (7/11)

	Neural Network characteristics, for what-if analysis				
	Binary label:	Binary label: 1 = cluster 4 (Innovation leader) "belonging"; 0 = cluster 4 (Innovation leader) "not belonging" ling of the data: MinMax procedure between -1 and + 1			
	Scaling of the data:				
	Resampling	Undersampling			
	method:				
14 features	NN Architecture:	Laver (type)	Output Shape		
and 1912		=======================================	=======================================		
observations		conv1 (Conv2D)	(None, 3, 16, 32)	320	
(training:1146; validation:		flat1 (Flatten)	(None, 1536)	0	
382; test :384)		dense (Dense)	(None, 100)	153700	
		dense2 (Dense)	(None, 1)	101	
	Features within the	Conv2D(32,(3,3), padding = "same",activation = 'relu')			
	Keras Tensorflow	Dense(100,activation = 'relu')			
	framework:	Dense(1,activation = 'sigmoid')			
		keras.optimizers.A	dam(learning_rate =	am(learning_rate = 0.01)	
		epochs = 200			
		batch_size = 32			
	Threshold for	0,50 (i.e.: if predic	ted probability > 0,5	0 then predicted class = 1;	
classification otherwise, predicted class = 0)					

Part II – results (8/11)

NN test set results

Confusion matrix	[33:	34]				
	[1	46]				
Classification report			precision	recall	f1-score	support
		0	1.00	0.99	0.99	337
		1	0.92	0.98	0.95	47
Accuracy				0	.987	

What-if analysis on Campania region case study (based on 2023 Campania's condition: "Moderate Innovator")

Progressive	Progressive changes in innovation indicator for Campania region	Predicted	
policy		probability for	
number		the belonging	
		of Campania	
		to Innovation	
		Leader cluster	
		of the	
		Factorial	
		K_means	
1	R&D expenditure in the business sector (from 2023 value of	2.66 e-06	
	CAMPANIA: 0.63 - to 2023 value of HANBURG: 1.22)		
2	R&D expenditure in the public sector (form 2023 value of	2.52 e-06	
	CAMPANIA: 0.68 - to 2023 value of HANBURG: 1.04)		
3	Employment in knowledge-intensive activities (from 2023 value of	2.8 e-04	
	CAMPANIA: 13 - to 2023 value of HANBURG: 21.8)		
4	Employed ICT specialists (from 2023 value of CAMPANIA: 3.03 - to	0.39	
	2023 value of HANBURG: 8.53)		
5	Employed ICT specialists (from 2023 value of CAMPANIA: 3.03 to	0.98 ┥	98%
	BERLIN 2023 value: 11.8)		

Campania's policies suggested path, from «Moderate Innovator» to «Innovation Leader»

40

Capabilities of NN what-if tool on FKM "EURIS-based" labelled dataset

Showing potential effectiveness of a specific innovation policy

Showing policies path to potentially push a region into an upper cluster

Process of European regional innovation Policy-making	Details
Current	Subjective policies formulation [based on EURIS original dataset (*)]
Proposed	More objective policy formulation [through NN what-if tool based on FKM "EURIS-based" labelled dataset]

Products:

 Paper (completed, to be submitted): <<Why do we need to complement the European Union Regional Innovation Scoreboard with a cluster-neural network tool for what-if policy analysis?>> (arXiv:2409.13316)

Thank you for your attention

0.6 0.8

....

Annex – selected variables and observations number

14 selected indicators (only those without empty values)

A	В	С	D	E	F	G	н	I	J	К	L	М	N	0	Р
Region	1.1.2	1.1.3	1.2.1	1.2.2	1.3.2	2.1.1	2.2.1	2.3.2	3.2.2	3.3.1 PCT	3.3.2	3.3.3	4.1.1	4.3.2 Air	Original_I
	Populatio	Populatio	Internati	Scientific	Individua	R&D	R&D	Employe	Public-	patent	Trademar	Design	Employm	emissions	abel(1_in
	n with	n	onal	publicati	ls with	expendit	expendit	d ICT	private	applicati	k	applicati	ent in	by fine	novation
	tertiary	involved	scientific	ons	above	ure in the	ure in the	specialist	co-	ons	applicati	ons	knowled	particulat	_leader;2
	educatio	in	co-	among	basic	public	business	s	publicati		ons		ge-	es	_ =strong;3
	n	lifelong	publicati	the top	overall	sector	sector		ons				intensive		=modera
		learning	ons	10% most	digital								activities		te;4=eme
		-		cited	skills										rging;)
AT1 - Ostösterreich_2023	47.1	16.2	3077.67	11.14291	33.51037	1.23	1.57	6.499569	620.6765	3.275195	12.90797	4.041177	17	10.4488	1
AT2 - Südösterreich_2023	39.7	13.5	2292.242	9.240662	32.75709	0.97	3.6	2.926125	768.1155	5.205167	9.653948	7.133428	15.8	10.07056	2
AT3 - Westösterreich_2023	38	13.2	1610.009	9.552832	33.28731	0.54	2.25	3.033231	462.6534	5.56701	12.89236	11.61575	15.9	9.065108	2
Bruxelles-Capitale / Brussels Hoofdstedeli	56.7	14.6	5547.53	11.30148	26.40564	0.76	1.48	7.89895	869.2432	1.681718	8.191717	1.980236	19.3	9.8	1
BE2 - Vlaams Gewest_2023	53.5	10.8	2528.396	12.81744	26.74808	0.94	2.4	5.618412	414.9163	3.401118	6.778162	3.331742	16.8	10.17532	1
BE3 - Région wallonne_2023	43.4	7.5	1289.689	9.993528	25.60944	0.52	2.82	4.759663	216.3525	2.709651	5.986541	1.527734	15.3	7.803079	2
BG31 - Severozapaden_2023	20.8	1	69.72379	0.763302	6.881001	0.12	0.27	0	8.537607	0.062934	2.784404	0.127064	8.3	18.25791	4
BG32 - Severen tsentralen_2023	34	2.7	126.5325	3.071327	7.739488	0.03	0.33	1.616713	18.6469	0.348278	5.949289	5.346707	12.3	15.68516	4
BG33 - Severoiztochen_2023	28	1	230.9878	1.850038	7.979152	0.17	0.18	1.60475	27.36823	0.280003	7.023993	1.11067	11.4	14.92144	4
BG34 - Yugoiztochen_2023	24.8	1.1	98.98413	1.800458	7.651486	0.09	0.27	1.008958	25.73587	0.303161	3.931686	1.470419	10.8	13.99912	4
BG41 - Yugozapaden_2023	46.5	2.4	1025.227	2.389569	8.072771	0.41	0.87	7.42913	149.7035	0.578724	12.1418	4.359904	18.7	19.51304	4
BG42 - Yuzhen tsentralen_2023	26.5	1.8	273.9277	3.845642	8.007238	0.18	0.33	1.846478	41.70028	0.475232	7.363344	2.735345	11.3	16.64603	4
CH01 - Région lémanique_2023	51.9	22.4	7763.293	13.1032	40.4981	0.94	1.59	4.326822	1270.152	7.192005	11.05623	4.199412	15.5	8.19736	1
CH02 - Espace Mittelland_2023	48.7	22	3338.417	12.08727	39.85358	0.94	1.38	4.664693	627.0016	5.191802	5.887445	2.542039	15.8	7.65563	2
CH03 - Nordwestschweiz_2023	48.1	23	5371.08	12.78128	39.7099	0.94	7.68	5.090259	1787.843	9.240179	12.91868	3.532225	19.8	8.480301	1
CH04 - Zürich_2023	64.8	26.1	8405.01	15.735	40.85115	0.94	1.17	9.986462	1627.828	6.091659	6.935341	1.029593	21.8	8.5	1
CH05 - Ostschweiz_2023	46.1	20.5	1313.434	11.97627	40.35032	0.94	1.34	3.448131	341.4429	5.62567	7.536571	24.59748	16.5	7.651123	1
CH06 - Zentralschweiz_2023	47.7	22.1	1124.61	6.456323	40.16968	0.94	2.51	4.381551	379.2707	5.582681	22.9303	7.014456	16.5	7.590787	2
CH07 - Ticino_2023	54.2	21.3	3861.651	12.87737	40.50221	0.94	0.32	5.022908	752.454	4.877491	16.2732	4.123704	14.3	10.8	1
CZ01 - Praha_2023	59.9	10.6	5540.197	4.933775	25.36658	1.45	1.37	13.2498	864.8227	0.542578	9.55155	3.112912	26.7	12.6	1

Observations # = all the EURIS regions per year (from 2016 to 2023)⁴⁵

Quantification of the compactness of clusters:

Sum of the squared distances between each data point and its corresponding cluster centroid

Annex – PCA criteria for number of latent variables

- **Eigenvalues greater then one rule**: keep any component that has an eigenvalue gretare then one
- **Scree diagram:** Plot of the eigenvalue for each component and stop when an additional factor would add relatively little to the information already extracted
- **Interpretability**: examine the interpretability of the components to only retain those providing an interpretable result from the meaning point of view

Annex – Correlation (FKM grouping and EURIS one)

FKM cluster	Correlation percentage with corresponding EURIS group				
Innovation Leader	74%				
Strong innovator	54%				
Moderate innovator	31%				
Emerging Innovator	85%				

Significant disparity at the central level ("Strong Innovator" and "Moderate Innovator")

FKM detailed tasks	Theoretical criteria	Suitable solution
Understanding the meaning of FKM adopted latent variables	Original variables standardization before FKM, to study impact (scores) of original variables on principal components	FKM on standardized original variables
Understanding the FKM clusters features	Studying centroids scores on FKM adopted latent variables, to understand clusters features through latent variables meaning	Analyzing FKM centroids scores

Annex - Methodology (2/3)

FKM detailed tasks	Theoretical criteria	Suitable solution
Ranking the FKM clusters	Comparing centroids scores on FKM adopted latent variables	Comparing FKM centroids scores
Labelling the FKM clusters	Taking into account EURIS label names , for developing a relative synergistic tool	Assigning EURIS label names according to FKM clusters ranking

FKM detailed task	Theoretical criteria	Suitable solution
< <within-cluster regional ranking>></within-cluster 	 latent variables (linked to different information contents, by construction) can be conceptually added without issues linear combination of region' s latent variables can be the index for <<within-cluster regional<br="">ranking>></within-cluster> 	Ranking according to a within- cluster regional index, based on the average among latent variables scores for each region