

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Fabrizio Guillaro Towards Robust and General Image Forgery Detection and Localization

Tutor: Luisa Verdoliva Cycle: XXXVII

co-Tutor: Giovanni Poggi Year: Third

Candidate's information

- MSc degree in Computer Engineering Università degli Studi di Napoli Federico II
- **Research group**: GRIP (Image Processing Research Group)
- **PhD start date**: 01/11/2021
- **PhD end date**: 31/10/2024
- Scholarship type: funded by DARPA under the SEMAFOR program through the DISCOVER project
- Periods abroad or in companies:
 - 30/10/2023 29/01/2024 at Google LLC (Mountain View, California, USA)
 - 30/01/2024 10/05/2024 at Google S.r.l. (remotely in Italy)

Summary of study activities

PhD year	Courses	Seminars	Research	Tutorship
1 st	26	10.8	23	1.28
2 nd	14	4.1	41.1	0.28
3 rd	13	0	47.4	0.5
Total	53	14.9	111.5	2.06

• PhD Schools:

- DeepLearn Summer School 2022 Las Palmas de Gran Canaria, Spain
- International Computer Vision Summer School (ICVSS) 2023 Scicli (RG), Italy
- IEEE-EURASIP Summer School on Signal Processing (S3P) 2024 Capri (NA), Italy

PhD courses:

- Introduction to Deep Learning Prof. Giovanni Poggi, Dr. Diego Gragnaniello
- How to boost your PhD Prof. Antigone Marino
- Statistical Multimedia Security and Forensics Prof. Fernando Pérez-González, at University of Trento
- Strategic Orientation for STEM Research & Writing Dr. Chie Shin Fraser
- Innovation and Entrepreneurship Prof. Pierluigi Rippa
- MSc courses:
 - Visione per Sistemi Robotici Prof. Giovanni Poggi, Dr. Davide Cozzolino
 - Image and Video Processing for Autonomous Driving Prof. Luisa Verdoliva
- Conferences:
 - International Conference on Pattern Recognition (ICPR), Montréal, Aug 21-25, 2022
 - IEEE International Workshop on Information Forensics (WIFS), (online) Dec 13-16, 2022
 - IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR), Vancouver, Jun 18-22, 2023

Research field of interest

• Image Forensics:

Analysis of forensic clues from visual data

Image Forgery Detection (IFD):

Is the image fake? Has the image been manipulated?

Image Forgery Localization (IFL):

Which part of the image has been manipulated?

Score 0.98 FAKE

Research field of interest

Image Forensics:

Analysis of forensic clues from visual data

Image Forgery Detection (IFD):

Is the image fake? Has the image been manipulated?

Image Forgery Localization (IFL):

Which part of the image has been manipulated?

Score

0.98 FAKE

Research field of interest

• Image Forensics:

Analysis of forensic clues from visual data

Image Forgery Detection (IFD):

Is the image fake? Has the image been manipulated?

Image Forgery Localization (IFL):

Which part of the image has been manipulated?

• Synthetic Image Detection (SID):

Is the image generated by AI?

Real

Fabrizio Guillaro – YEP

Research results

- Development of an IFL method (**Comprint**) based on the compression fingerprint of an image
- Development of a general IFL and IFD method (**TruFor**), based on:
 - A more robust noise fingerprint (Noiseprint++)
 - A confidence map for a more trustworthy detection
- Exploration of the adversarial robustness of Synthetic Image Detectors and transferability of the attacks

Research products

	H. Mareen, D. Vanden Bussche, F. Guillaro, D. Cozzolino, G. Van Wallendael, P. Lambert, L.						
[P1]	Verdoliva,						
	Comprint: Image Forgery Detection and Localization using Compression Fingerprints,						
	Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International						
	Workshops and Challenges. Lecture Notes in Computer Science,						
	vol 13644, pp. 281-299. Springer, Cham. Montréal, QC, Canada, 2022						
	F. Guillaro, D. Cozzolino, A. Sud, N. Dufour, L. Verdoliva, Google Research						
[P2]	TruFor: Leveraging all-round clues for trustworthy image forgery detection and localization,						
	IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),						
	Vancouver, BC, Canada, 2023, pp. 20606-20615						
	F. Guillaro, D. Cozzolino, G. Poggi, L. Verdoliva,						
	Uncertainty-driven detection and localization of image forgeries,						
[P3]	Chapter in CNIT Volume. Series: Signal Processing and Learning for Next Generation						
	Multimedia,						
	pp. 145-164, 2024						
	V. De Rosa, F. Guillaro, G. Poggi, D. Cozzolino, L. Verdoliva,						
[04]	Exploring the Adversarial Robustness of CLIP for AI-generated Image Detection,						
[P4]	IEEE International Workshop on Information Forensics and Security (WIFS),						
	Rome, Italy, December 2024.						

- Problem
 - Editing tools are easier to use and more powerful

- Problem
 - Editing tools are easier to use and more powerful

- Problem
 - Editing tools are easier to use and more powerful
 - Users can maliciously manipulate data and spread **fake news**

- Problem
 - Editing tools are easier to use and more powerful
 - Users can maliciously manipulate data and spread **fake news**

- Problem
 - Editing tools are easier to use and more powerful
 - Users can maliciously manipulate data and spread **fake news**
- Objective
 - Develop general techniques for image forgery detection and localization
 - Design methods that are **robust** to post-processing operations, such as re-compression and resizing

TruFor: Overview

Phase

1

Phase

Phase

3

Methodology

1	Noiseprint++ Extraction	 A noise-sensitive fingerprint with high-level information Training: only pristine images
2	Anomaly Localization	 Cross-modal framework (RGB and NP++) Training: pristine and forged images
3	Confidence Estimation and Forg Detection	 Confidence and anomaly maps for a reliable detection Training: pristine and forged images

Google Research

Noiseprint++ extractor

- Contrastive Learning only on real images (to gain generalization)
- Training includes around 25k images from 1500 camera models
 (8 patches per image with random editing history)

Noiseprint++

- It's a **learned noise residual**, which enhances high frequency traces and suppresses the semantic content
- A first attempt was made with *Comprint*, a compression fingerprint which only enhanced JPEG compression artifacts
- Noiseprint++, instead, represents a fingerprint of the camera model and

Noiseprint++

- When an image is manipulated, the noise pattern is disrupted
- Inconsistencies between forged and pristine regions are enhanced with improved robustness to post-processing operations

Fabrizio Guillaro – YEP

- Anomaly localization maps may have **false positives**
- We develop a strategy that estimates a pixel-level **confidence map**

anomaly map (pred)

ground truth (gt)

- Our confidence criterion is **True Class Probability** (TCP):
 - for each pixel it is the value corresponding to the true class

$$TCP_i = gt_i \cdot pred_i + (1 - gt_i)(1 - pred_i)$$

Confidence (TCP)

- Ground truth is needed for TCP, but we do not have it at inference time
- We need to estimate it with a learned confidence

estimated confidence

Fabrizio Guillaro – YEP

- Ground truth is needed for TCP, but we don't have it at inference time
- We need to estimate it with a **learned confidence**

Confidence (TCP)

estimated confidence

Forgery detection

- Confidence estimation and the detector networks trained together
- Eight statistics are fed to the detector

Forgery detection

- False positives in the localization map do not affect the final score
- A score > 0.5 indicates manipulation

Fabrizio Guillaro – YEP

Google Reséarch

Metrics

- **Evaluation metrics:**
 - Pixel-level localization metric: F 0

$$F1 = \left(\frac{1}{precision} + \frac{1}{recall}\right)^{-1}$$

Image-level detection metric: Area Under ROC Curve 0

image

localization map

F1 score: 0.82

integrity score (is it fake?)

0,93 (fake)

Fabrizio Guillaro – YEP

Google Research

Evaluation results - Localization

- Evaluation in terms of F1 on 8 publicly available datasets (4K fake images)
- Our method provides the best performance and it is able to generalize better

	Method	CASIAv1	Coverage	Columbia	NIST16	DSO-1	VIPP	OpenFor	CocoGlide	AVG
_	Splicebuster	.252	.321	.811	.312	.662	.432	.459	.434	.460
	EXIF-SC	.255	.332	.880	.298	.577	.424	.318	.424	.437
	CR-CNN	.538	.487	.779	.363	.377	.355	.143	.577	.452
	ManTraNet	.320	.486	.650	.225	.537	.373	.661	.673	.491
	SPAN	.169	.428	.873	.363	.390	.375	.176	.350	.391
	CAT-Net v2	.852	.582	.923	.417	.673	.672	.947	.603	.709
	IF-OSN	.676	.472	.836	.449	.621	.508	.204	.589	.544
	MVSS-Net	.650	.659	.781	.372	.459	.485	.225	.642	.534
	PSCC-Net	.670	.615	.760	.210	.733	.309	.353	.685	.542
	Noiseprint	.205	.342	.835	.345	.811	.546	.675	.405	.521
	TruFor (Ours)	.822	.735	.914	.470	.973	.746	.901	.720	.785

Pixel-level F1 using best threshold per image

Google Research

Robustness analysis

- Evaluation results on datasets uploaded on different **social media**
- When images are uploaded on the web, they undergo post-processing operations (resizing, compression, ...)

Evaluation results - Detection

- Evaluation in terms of AUC (0.5 represents the random guessing)
- Thanks to the use of the confidence map, TruFor performs better

Method	CASIAv1+	Coverage	Columbia	NIST16	DSO-1	VIPP	CocoGlide	AVG
Splicebuster	.406	.541	.597	.610	.751	.539	.529	.568
EXIF-SC	.490	.498	.976	.504	.764	.617	.526	.625
CR-CNN	.670	.553	.755	.737	.576	.504	.589	.626
ManTraNet	.644	.760	.810	.624	.874	.530	.778	.717
SPAN	.480	.670	.999	.632	.669	.580	.475	.644
CAT-Net v2	.942	.680	.977	.750	.747	.813	.667	.797
IF-OSN	.735	.557	.882	.658	.853	.696	.611	.713
MVSS-Net	.932	.733	.984	.579	.552	.629	.654	.723
PSCC-Net	.869	.657	.300	.485	.650	.574	.777	.616
E2E	.377	.494	.894	.718	.803	.617	.530	.633
Noiseprint	.494	.525	.872	.618	.821	.580	.520	.633
TruFor (Ours)	.916	.770	.996	.760	.984	.820	.752	.857

Image-level AUC

Synthetic Image Detectors

- We extend the idea of confidence estimation for the detection of fully Al-generated images
- This can help to discard the prediction if the detector is not confident enough (heavy post-processing)

Fake image

Synthetic Image Detectors

- We extend the idea of confidence estimation for the detection of fully Al-generated images
- This can help to discard the prediction if the detector is not confident enough (heavy post-processing)

Synthetic Image Detectors

• The accuracy on low-quality data drops to less than 60%

• Fakes classified as real (red distribution leaning to the left) are marked as **unreliable** (distribution falls in the bottom of the graph)

Adversarial Attacks

- An adversarial attack is designed to fool a detector into predicting a wrong label
- The attacked image is perturbed with an adversarial noise imperceptible to the naked eye

Fake image

Adversarial Attacks

- An adversarial attack is designed to fool a detector into predicting a wrong label
- The attacked image is perturbed with an adversarial noise imperceptible to the naked eye

perturbation

+

Fake image

Detector Fake

Adversarial Attacks

- An adversarial attack is designed to fool a detector into predicting a wrong label
- The attacked image is perturbed with an adversarial noise imperceptible to the naked eye

Attacked fake image

Adversarial robustness

- We explored the **adversarial robustness** of Synthetic Image Detectors to different attacks (l_2 -PGD, DI²-FGSM, RWA, UA)
- We analyzed the **transferability** of attacks between families of detectors
 - **CNN-based** (Convolutional Neural Networks)
 - **CLIP-based** (Contrastive Language-Image Pretraining)

Results

- Findings:
 - Attacks transfer easily between similar architectures...
 - ...but do not transfer well between different families (CNN vs CLIP)
- Explanation:
 - CNN and CLIP detectors look at different frequencies

Power spectra of adversarial noise patterns

Fabrizio Guillaro – YEP

Conclusions

- We introduced a general and robust Image Forgery Localization and Detection method based on contrastive learning and confidence map estimation
- We explored the adversarial robustness of Synthetic Image Detectors and transferability of attacks, shedding light on how forensic detectors work
- This analysis can help to build more effective detectors, robust to postprocessing operations and to malicious attackers
- It would be also important to develop a strategy to detect both local and fully generated AI-content at the same time

Thank you for the attention!

