

Luca Giamattei Reasoning-Based Software Testing

Tutor:Prof. Roberto PietrantuonoCycle:XXXVIIYear:Third

Candidate's information

- MSc degree: Computer Engineering
- Research group: DESSERT
- PhD start date end date: 01/11/2021 31/10/2024
- Fellowship: Unina
- Periods abroad: 3 months to Università della Svizzera Italiana (Prof. Paolo Tonella)
- Periods in company: 4 months to Panel Sistemas Informaticos (Madrid) – 1 month to Silensec (Cyprus)

Summary of study activities

• PhD schools:

- International Winter School on Blockchain Technology and Applications Hyperledger, Università di Camerino
- Advanced Course on Data Science & Machine Learning, Proff. Nicosia, Pardalos

• Courses:

- Machine Learning (MSc course)
- Statistical data analysis for science and engineering research (PhD course)
- Virtualization technologies and their applications (PhD course, Dr. De Simone)
- IoT Data Analysis (PhD course), Prof. Raffaele Della Corte

• Conferences attended:

- International Conference on the Quality of Information and Communications Technology (QUATIC), Talavera de la Reina, Spain, September 2022
- 22nd IEEE International Conference on Software Quality, Reliability and Security (QRS), Guangzhou, China, 2022 (online)
- 45th IEEE/ACM International Conference on Software Engineering (ICSE), Melbourne, Australia, 2023
- 34th IEEE International Symposium on Software Reliability Engineering (ISSRE), Florence, Italy, 2023
- 46th IEEE/ACM International Conference on Software Engineering (ICSE), Lisbon, Portugal, 2024

Research area: Software Testing

Testing of Autonomous Driving Systems

- Testing of Microservices Architectures
 - Product:

MacroHive, a prototype for automated grey-box MSA testing and Root Cause Analysis

Research results

- Major contribution: Definition, formalization, and evaluation of a novel software testing mothodology based on causal reasoning called Reasoning-Based Software Testing
- Minor contributions:
 - Evaluation and implementation of monitoring infrastructures for microservices
 - Anomaly detection and Root cause analysis of energy consumption in microservices

Research products (1)

	L. Giamattei, A. Guerriero, R. Pietrantuono, S. Russo,
[P1]	Causality-driven Testing of Autonomous Driving Systems,
	ACM Transactions on Software Engineering and Methodology (TOSEM),
	Vol 33, 3, 2024, DOI: 10.1145/3635709.
	L. Giamattei, A. Guerriero, R. Pietrantuono, S. Russo, I. Malavolta, T. Islam, M. Dînga, A.
[P2]	Koziolek, S. Singh, M. Armbruster, J.M. Gutierrez-Martinez, S. Caro-Alvaro, D.
	Rodriguez, S. Weber, J. Henss, E. Fernandez Vogelin, F. Simon Panojo,
	Monitoring tools for DevOps and microservices: A systematic grey literature review,
	Journal of Systems and Software (JSS),
	Vol 208, 2024, 111906, ISSN 0164-1212, DOI: 10.1016/j.jss.2023.111906
[P3]	L. Giamattei, A. Guerriero, R. Pietrantuono, S. Russo,
	Automated functional and robustness testing of microservice architectures,
	Journal of Systems and Software (JSS),
	Vol 207, 2024, 111857, ISSN 0164-1212, DOI: 10.1016/j.jss.2023.111857.
[P4]	<u>L. Giamattei</u> , M. Biagiola, R. Pietrantuono, S. Russo, P. Tonella,
	Reinforcement Learning for Online Testing of Autonomous Driving Systems: a
	Replication and Extension Study,
	Empirical Software Engineering (EMSE),
	Accepted, to appear.

Research products (2)

L. Giamattei, A. Guerriero, R. Pietrantuono, S. Russo,
Causal Reasoning in Software Quality Assurance: A Systematic Review,
Information and Software Technology (IST),
Accepted, to appear.
L. Giamattei, A. Guerriero, R. Pietrantuono and S. Russo,
Assessing Black-box Test Case Generation Techniques for Microservices,
15th International Conference on the Quality of Information and Communications
Technology (QUATIC),
Talavera de la Reina, Spain, Sep. 12-14, 2022, pp. 46-60, Springer, DOI: 10.1007/978-3-
031-14179-9_4
L. Giamattei, A. Guerriero, R. Pietrantuono, S. Russo,
Automated Grey-Box Testing of Microservice Architectures,
22nd International Conference on Software Quality, Reliability and Security (QRS),
Guangzhou, China, 2022, pp. 640-650, IEEE, DOI: 10.1109/QRS57517.2022.00070
L. Giamattei, R. Pietrantuono, S. Russo,
Reasoning-Based Software Testing,
45th International Conference on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER),
Melbourne, Australia, May 14-20, 2023, pp. 66-71, IEEE, DOI: 10.1109/ICSE-
NIER58687.2023.00018

Research products (3)

	M. Dinga, I. Malavolta, <u>L. Giamattei</u> , A. Guerriero, R. Pietrantuono,
[P9]	An Empirical Evaluation of the Energy and Performance Overhead of Monitoring Tools
	on Docker-Based Systems,
	21st International Conference on Service-Oriented Computing (ICSOC),
	Rome, Italy, Nov. 28 – Dec. 1, 2023, pp. 181-196, Springer, DOI: 10.1007/978-3-031-
	48421-6_13
[P10]	L. Giamattei, A. Guerriero, I. Malavolta, C. Mascia, R. Pietrantuono, S. Russo,
	Identifying Performance Issues in Microservice Architectures through Causal
	Reasoning,
	5th International Conference on Automation of Software Test (AST),
	Lisbon, Portugal, Apr. 15-16, 2024, pp. 149–153, ACM, DOI:
	10.1145/3644032.3644460
[P11]	M. S. Floroiu, S. Russo, <u>L. Giamattei</u> , A. Guerriero, I. Malavolta, R. Pietrantuono,
	Anomaly Detection and Root Cause Analysis of Microservices Energy Consumption,
	International Conference on Web Services (ICWS),
	Shenzhen, China, Jul. 7-13, 2024, IEEE, to appear.

PhD thesis overview

• Motivation:

- Automation of software testing is key in modern systems
- Evolution of Software Testing led to data-driven techniques that are ineffective in complex and dynamic environments

Problem statement:

 Data-driven techniques are not able to answer the fundamental question of software testing:

"What input <u>causes</u> the system to fail?"

- Objective:
 - Shift from data-driven to reasoning-driven software testing
- Methodology:
 - Reasoning-Based Software Testing (RBST)
 - Validation trough stateless and stateful testing of Autonomous Driving Systems

Evolution of Software testing Guessing/ What input makes the system fail?

electrical end

Confounding bias

P(D|V = v)

Causal Reasoning

Confounding bias

P(D | R(dQ | V = v))

- Build a causal model
 - Manually
 - Randomized Controlled Experiments
 - Causal Discovery Algorithms

- 2) Query model via Interventions/counterfactuals
 - Select variable on which intervene
 - Assign value of intervention
 - Estimate effect and generate *hypothetical tests*

Luca Giamattei

3) Select set of *hypothetical* tests

Luca Giamattei

Reasoning-Based Software Testing instantiation for **stateless** testing

- RBST Instance:
 - CART (CAusal-Reasoningdriven Testing)

Req.	Description
r1	EV must keep the lane
r2	EV must not collide with other vehicles
r3	EV must not collide with pedestrians
r4	EV must not collide with static meshes
r5	EV must complete the route
r6	EV must abide by traffic rules (i.e., red lights

electrical engineer

Step	Choices
Model building	CD
Intervention variable	Node out-degree
selection	Random
Intervention value assignment	Exhaustive
Effect estimation	Simulation-based

 ADS safety and functional requirements

Reasoning-Based Software Testing instantiation for **stateful** testing

 Markov Decision Process mapping to Structural Causal Model

Step	Choices
Model building	Domain knowledge
Intervention variable selection	Fixed (action)
Intervention value assignment	Random
Effect estimation	Simulation-based

Reasoning-Based Software Testing instantiation for **stateful** testing

- Motivation study (cartpole env.)
 - action: cart right/left
 - reward: +1 if pole up
 - state: cart/pole position, angle and speed

Reasoning-Based Software Testing instantiation for **stateful** testing

- ADS testing
 - scenario: 4-way intersection
 - r2: collision with other vehicles
 - actions: vehicles lane offset and change lane right/left, speed up/down
 - state: vehicles speed, heading, and distance from EV

Thank you

