

Simona De Vivo

Augmented AI for Sustainable Cyber Security in Railway Environment

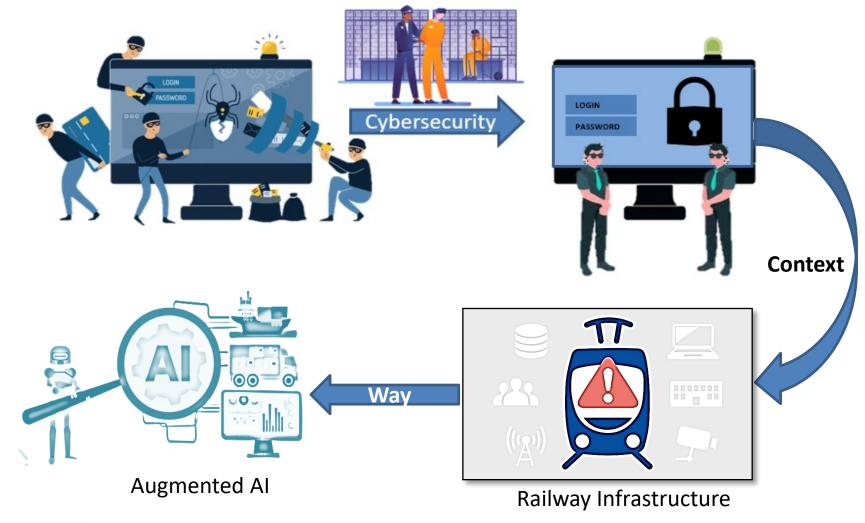
Tutor: Prof. Domenico Cotroneo

Cycle: XXXVII

Year: First

Presentation Organization

- CONTENT
 - My background
 - My research topics
 - Summary of study activities
 - My research activity
 - Research products
 - Tutorship
 - Next year



My background

- I received my M.Sc. in Computer Engineering (cum laude) from University of Naples Federico II in October 2021
- I work within the DESSERT group at DIETI
- My PhD started on 1st January 2022
- **Type of fellowship:** PhD student grant Type: MUR PON

Research field of interest

Summary of study activities

Conferences / events attended:

• The 1st Intl. Workshop on Natural Languagebased Software Engineering Co-located with ICSE 2022

Seminars:

- Rails Mid-Term Workshop
- Project Vāc: Can a Text-to-Speech Engine Generate Human Sentiments?
- Explainable Natural Language Inference
- An Introduction to Deep Learning for Natural Language
- QoE management in 5G networks
- Cybercrime and Information warfare: national and international actors
- Privacy and Data Protection
- Privacy-Preserving Machine Learning

Ad hoc PhD courses / schools:

- Virtualization technologies and their applications
- Statistical data analysis for science and engineering research
- Scientific Programming and Visualization with Python
- Imprenditorialità Accademica
- ARTISAN Summer School (Role and effects of ARTificial Intelligence in Secure ApplicatioNs)
- Machine Learning for Science and Engineering Research
- DataWeek (Python & Tableau)

Courses borrowed from MSc curricula:

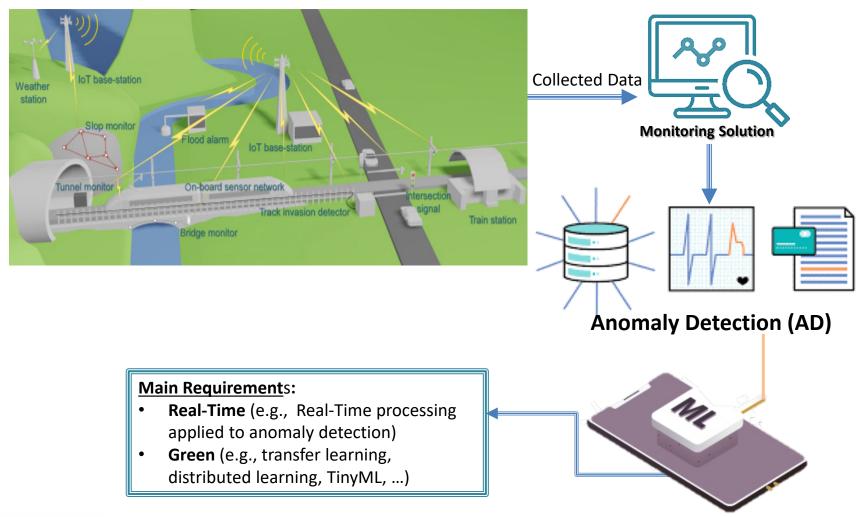
- Data Security
- Critical Data Visualization

Research activity: Problems

ō

Cybersecurity

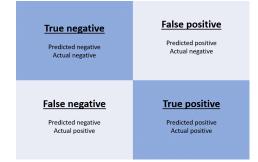
 \bigcirc


- Data dumps and junk data;
- Use of artificial intelligence techniques (e.g., deep learning models) that are computationally very complex and result in excessive waste of resources;
- Emission of massive amounts of CO₂.

Railway Infrastructure

- Railway maintenance requires machines and operation that usually emit significant amounts of carbon;
- Railway infrastructure must satisfy safety regulations that include preventive maintenance;
- Cost optimization at every stage of the process, including maintenance;
- Maintenance of a wide variety of technological elements which are installed in railway infrastructure.

Research Activity: Proposed Solution



Research activity: Methodology

..test the robustness of the monitoring solution?

 I will evaluate the accuracy in terms of metrics commonly used for anomaly detection (e.g., tre/false positive/negative rates).

HOW

ΤΟ....

- .. assess the improvements made from an energy and computational point of view?
 - I will evaluate the reductions in carbon emissions, energy consumption, execution time, the complexity of the models implemented, etc.

My Product

Conference Paper	Liguori Pietro, Improta Cristina, De Vivo Simona, Natella
	Roberto, Cukic Bojan, & Cotroneo Domenico (2022). "Can NMT
	Understand Me? Towards Perturbation-based Evaluation of
	NMT Models for Code Generation". IEEE/ACM 1st International
	Workshop on Natural Language-Based Software Engineering
	(NLBSE), 2022.

Tutorship

 During the first year, I carried out 5 hours of tutoring as part of the "additional activities" called "Matlab and Simulink for Electrical Engineering".

Future Activities

- Use of NLP techniques to monitor infrastructure and identify anomalies due to cyber attacks;
- Implementation of an intelligent attack analysis and detection solution using online data processing;
- Period abroad: University of North Carolina at Charlotte, under the supervision of the Dr. Bojan Cukic.

Thank you!

Contact: simona.devivo@unina.it

Simona De Vivo

Bibliography

- Li, Q.Y., Zhong, Z.D., Liu, M. and Fang, W.W., 2017. Smart railway based on the Internet of Things. In Big data analytics for sensor-network collected intelligence (pp. 280-297). Academic Press.
- Jo, O., Kim, Y.K. and Kim, J., 2017. Internet of things for smart railway: feasibility and applications. *IEEE Internet of Things Journal*, *5*(2), pp.482-490.
- Lydia, E.L., Jovith, A.A., Devaraj, A.F.S., Seo, C. and Joshi, G.P., 2021. Green energy efficient routing with deep learning based anomaly detection for internet of things (IoT) communications. *Mathematics*, *9*(5), p.500.
- Siegmund, N., Dorn, J., Weber, M., Kaltenecker, C. and Apel, S., 2022. Green Configuration: Can Artificial Intelligence Help Reduce Energy Consumption of Configurable Software Systems?. *Computer*, *55*(3), pp.74-81.
- Cai, H., Gan, C., Wang, T., Zhang, Z., & Han, S. (2019). Once-for-all: Train one network and specialize it for efficient deployment. *arXiv preprint arXiv:1908.09791*.
- Lenherr, Nicola, René Pawlitzek, and Bruno Michel. "New universal sustainability metrics to assess edge intelligence." *Sustainable Computing: Informatics and Systems* 31 (2021): 100580.
- Kashyap, Pankaj Kumar, et al. "DECENT: Deep Learning Enabled Green Computation for Edge centric 6G Networks." *IEEE Transactions on Network and Service Management* (2022).
- KOUR, Ravdeep, et al. A review on cybersecurity in railways. *Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit*, 2022, 09544097221089389.

Simona De Vivo

Bibliography

- Viegas, Eduardo, et al. "Towards an energy-efficient anomaly-based intrusion detection engine for embedded systems." *IEEE Transactions on Computers* 66.1 (2016): 163-177.
- Abououf, Menatalla, et al. "Self-supervised Online and Light-Weight Anomaly and Event Detection for IoT Devices." *IEEE Internet of Things Journal* (2022).
- Paparrizos, John, et al. "Volume under the surface: a new accuracy evaluation measure for time-series anomaly detection." *Proceedings of the VLDB Endowment* 15.11 (2022): 2774-2787.
- Habeeb, Riyaz Ahamed Ariyaluran, et al. "Real-time big data processing for anomaly detection: A survey." *International Journal of Information Management* 45 (2019): 289-307.
- Yao, Yuan, et al. "Online anomaly detection for sensor systems: A simple and efficient approach." *Performance Evaluation* 67.11 (2010): 1059-1075.
- Ding, Nan, et al. "Real-time anomaly detection based on long short-Term memory and Gaussian Mixture Model." *Computers & Electrical Engineering* 79 (2019): 106458.
- Van Wyk, Franco, et al. "Real-time sensor anomaly detection and identification in automated vehicles." *IEEE Transactions on Intelligent Transportation Systems* 21.3 (2019): 1264-1276.

