

PhD in Information Technology and Electrical Engineering Università degli Studi di Napoli Federico II

PhD Student: Giancarlo D'Ago

Cycle: XXXVII

Training and Research Activities Report

Year: First

Giomearlo D'Ago

Tutor: Prof. Fabio Ruggiero

Falio Rugiero

Co-Tutor: Dr. Eng. Luca Rosario Buonocore Prof. Vincenzo Lippiello

Date: December 13, 2022

PhD in Information Technology and Electrical Engineering

1. Information:

- PhD student: Giancarlo D'Ago
- **DR number:** DR996238
- **Date of birth:** 13/09/1997
- > Master Science degree: Automation Engineering University of Naples 'Federico II'
- Doctoral Cycle: XXXVII
- Scholarship type: CERN Doctoral Student Programme
- **Tutor:** Prof. Fabio Ruggiero
- Co-tutor: Dr. Eng. Luca Rosario Buonocore, Prof. Vincenzo Lippiello

2. Study and training activities:

Activity	Type ¹	Hours	Credits	Dates	Organizer	Certificate ²
Evento Enel	Seminar	1	0.2	01/02/2022	DIETI	Y
Study of implementation and simulation for the control of aerial manipulators. Revising paper Modelling and control of a variable-length flexible beam on inspection ground robot for ICRA22	Research		9.8	From 01/01/2022 to 28/02/2022		
Matrix Analysis for Signal Processing with MATLAB Examples	Course	8	2.0	22- 23/03/22 5-7/04/22	DIETI	Y
Global and cluster synchronization in complex networks and beyond	Seminar	1	0.2	10/03/2022	DIETI	Y
IEEE Authorship and Open Access Symposium: Tips and Best Practices to Get Published from IEEE	Seminar	1.5	0.3	30/03/2022	IEEE	Y
Safety mask course	Seminar	1	0.2	06/04/2022	CERN	Y
MATLAB & Simulink Italian Academic Forum	Seminar	4	0.8	07/04/2022	MATLAB	Y
Service and companion robots in healthcare	Seminar	1.5	0.3	21/04/2022	DIETI	Y
On using simple optimization techniques for tuning of UAVs	Seminar	2	0.4	27/04/2022	DIETI	Y
Using Delays for Control	Seminar	2	0.4	21/04 - 28/04/2022	DIETI	Y
Study on: modelling and control of a dual-arm suspended flying robotic system with simulations in MATLAB and Gazebo. Low-level control of robotic arms, study on Can and CanOpen protocols. Laboratory activity: configuration and control of	Research		5.4	From 01/03/2022 to 30/04/2022		

Training and Research Activities Report PhD in Information Technology and Electrical Engineering

Cycle: XXXVII

Author: Giancarlo D'Ago

electric brushless motors						
				22.24.20		
Statistical data analysis for	~	10		22-24-29-	DIDTI	
science and engineering	Course	12	4	31/03/22	DIETI	Y
research				5-7/04/22		
				From		
Scientific Writing	Course	12	3.0	03/05/2022 to	CERN	Y
Selentine Witting	course	12	5.0	23/05/2022 10	CERT	-
				25/05/2022		
IEEE 2022 ICKA						
WORKSHOP - Shared					IEEE 2022	
Autonomy in Physical	Seminar	8	1.6	23/05/2022	ICRA	Y
Human-Robot Interaction:					iciur	
Adaptability and Trust						
Vine robots: design						
challenges and unique	Seminar	1	0.2	31/05/2022	DIETI	Y
opportunities	Seminar		0.2	51,00,2022	DILII	-
Study on Madalling of a						
Study off. Modeling of a						
dual arm suspended flying						
robot. Creation of an						
optimization framework for						
the identification of						
dynamic parameters of a				From		
dual arm suspended flying	Research		1.2	01/05/2022 to		
robot Analysis of			-	30/06/2022		
experimental data from the				50/00/2022		
real system Laboratory						
Teal system. Laboratory						
activity. Configuration and						
control of electric brushless						
motors						
General and Professional	Course	80	6.0	April – July	CEDN	v
French Course	Course	80	0.0	2022	CERN	1
Study on: refinement of the						
optimisation framework for						
identifying the dynamic						
norameters of a cable						
parameters of a cable-						
Suspended System.						
Experimental data analysis						
of an aerial cable-suspended						
system. Analysis of						
experimental data of a				From		
cable-suspended system	Daaaaah		4.0	01/07/2022 45		
suspended from an	Research		4.0	01/07/2022 10		
overhead crane. Modelling				31/08/2022		
and simulation of cable-						
suspended systems						
Dreparation of the						
aonforanza nanar						
Conference paper						
Moaelling, identification,						
and simulation of a cable-						
suspended dual-arm aerial						
manipulator						
9TH BE-CEM Students'	Sominan	1	0.2	12/10/2022	CEDN	v
Coffee	Seminars	1	0.2	12/10/2022	CEKN	Y
Study on: improvements on						
the model-based oscillation						
suppression control for				From		
cable suspended rebetic	Decearab		0.0	01/00/2022 to		
avatama Madal fraz	Research		7.0	21/10/2022 10		
systems. Wodel-free				51/10/2022		
oscillation suppression for						
cable-suspended robots.			l			

UniNA ITEE PhD Program

Training and Research Activities Report PhD in Information Technology and Electrical Engineering

Cycle: XXXVII

Author: Giancarlo D'Ago

				r	r	
Study, simulation, and						
implementation on a dual-						
arm system. Preparation and						
submission of the						
conference paper Modelling						
and identification methods						
for simulation of cable-						
suspended dual-arm						
robotic systems for IEEE						
ICRA 23. Laboratory						
activity: documentation for						
the purchase of a motion						
capture optical systems						
for robotic activities.						
Configuration of electric						
drives for mobile robotic						
platforms. Collaboration on						
the re-implementation of						
low-level communication						
libraries with CANOpen						
protocol for robotic						
manipulators						
Operational Research:						
Mathematical Modelling,	~			14-21-28/09		
Methods, and Software	Course	12	4.0	05-12/10/2022	DIETI	Y
Tools for Optimization				•••••		
Problems						
Crane Operator and Slinger	Course	16	0.0	22/11/2022 -	CERN	Y
East Forward the				From		
productivity system for	Course	12	3.0	17/10/2022 to	CERN	Y
researchers	couise		2.0	2/12/2022	CLIU	-
Stabilizer Renvi Entropy	a .		. .	00/11/0000	DIDEL	
and Quantum Complexity	Seminar	1	0.2	02/11/2022	DIETI	Y
Study on: oscillation						
suppression control of						
cable-suspended dual-arm						
robotic platforms. Model-						
free and model-based						
techniques. Control of						
underactuated systems:						
state-of-art research						
regarding energy control,						
passivity control, under						
actuation. Laboratory						
activity: Market research for				From		
Motion Capture sensor for	Research		2.8	01/11/2022 to		
Robotic System.				31/12/2022		
Configuration of electric						
drives for mobile robotic						
platform. Collaboration on						
the re-implementation of						
low-level communication						
libraries with CANOpen						
protocol for robotic						
manipulators. First						
experiments on the real						
system. QR code detection						
for preliminary experiments						

UniNA ITEE PhD Program

Training and Research Activities Report

PhD in Information Technology and Electrical Engineering

on the implementation of			
the model-free control			
technique for oscillation			
suppression. Collaboration			
with University of Seville in			
the AERIAL-CORE			
European Project. First			
implementation of the			
model-free control on the			
real system. Simulation in			
C++, ROS, Gazebo of the			
model-based control.			

1) Courses, Seminar, Doctoral School, Research, Tutorship

2) Choose: Y or N

2.1. Study and training activities - credits earned

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	0.0	0.2	9.8	0.0	10.0
Bimonth 2	7.0	1.8	1.2	0.0	10.0
Bimonth 3	2.0	2.6	5.4	0.0	10.0
Bimonth 4	6.0	0.0	4.0	0.0	10.0
Bimonth 5	0.0	0.2	9.8	0.0	10.0
Bimonth 6	7.0	0.2	2.8	0.0	10.0
Total	22.0	5.0	33.0	0.0	60.0
Expected	30 - 70	10 - 30	80 - 140	0 - 4.8	

3. Research activity:

Long-reach robotic manipulation aims to perform inspection and maintenance tasks in difficult-toaccess workspaces. A recent challenge in this field is the execution of operations in high-altitude areas (e.g., maintenance of power lines, inspection of infrastructures, etc.) where the direct access of humans is dangerous or costly. It is clear that, in this context, the use of conventional serial or parallel robots is impractical due to their limited workspace, and alternative robot designs must be leveraged. In these scenarios, manipulators in a long-reach pendulum configuration are usually employed. They are constructed using one or multiple cables that: (i) dramatically decrease the weight of the overall robotic system compared to using rigid links only; (ii) provide orders of magnitude larger end-effector workspace without affecting the weight of the manipulators' base; and (iii) exhibit superior resilience to absorb external disturbances such as impacts and collisions. Despite the clear advantages of using cablesuspended long-reach manipulators, they are generally more difficult to control due to the presence of non-actuated and flexible elements (cables) that make the entire system prone to uncontrolled oscillation.

The conducted research aims to model, identify, simulate, and control this type. The study carried out during this first year involved the search for a model that could capture the dynamic effect of a suspended articulated system as the ones considered. For the study of the dynamics, the behaviour of

PhD in Information Technology and Electrical Engineering

Cycle: XXXVII

Author: Giancarlo D'Ago

two case studies has been analysed: the first system is a bi-manual system designed by the BE-CEM-MRO section at the European Organization for Nuclear Research (CERN) for the inspection and maintenance of particle accelerator-related infrastructures. In this case, a set of pulleys and steel ropes, coupled through a hook to a lower platform, serves as a lifting mechanism to hoist an articulated system (two Schunk LWA 4P arms) from an overhead crane. The second is an aerial cable-suspended dual-arm system developed by the GRVC Robotics Labs at the University of Seville used to install bird diverters on high-voltage power line. In that system, four belts, tied in a parallel pattern to a drone and to a lower platform, hold two four-DoF (Degree of Freedom) manipulators.

Long-reach cable-suspended articulated system modelling was carried out using the screw theory and Newton-Euler approaches. Since the real cable structure forms a closed kinematic chain, an equivalent open kinematic chain is adopted to simulate these systems using customary rigid-body dynamic simulators. The equivalence between the adopted open kinematic chain and the real system has been established by finding a set of dynamic parameters that maximize the similarity of their dynamic response. A set of experiments was conducted on both the systems case of study, and an identification procedure involving the solution of an optimization problem was developed. Once an estimate has been obtained, parameters are appropriately replaced into the model, and the behaviour of the simulated system is compared with a new set of experiments on the real platforms. This research work led to the production of a conference paper [P2] submitted in September 2022 to the 2023 IEEE International Conference on Robotics and Automation (ICRA), which is the result of a collaboration between CERN, PRISMA Lab of University of Naples 'Federico II' and GRVC Robotics Lab of University of Seville.

The control problem addressed during the first year is the suppression of the oscillation of the system during the transport of the dual-arm robotic system. As anticipated, despite the advantages of using cable-suspension, the system is prone to difficult-to-control oscillations, hence the objective of the control is to reduce the settling time of the oscillation. This first phase of the research addresses the actuation of the articulated system only to accomplish the suppression task. Two different control strategies have been studied. The first is a model-based control strategy, namely non-collocated partial feedback linearization, suitable for underactuated system, simulations through mathematics computation softwares (MATLAB), rigid-body dynamic simulators (Gazebo) and Operating Systems for Robotics (ROS) have been carried out. The second is a model-free energy-based control technique, which has been implemented and tested at the University of Seville. Both the strategies have shown promising results.

Parallel projects conducted during the year called for the configuration and control of electric motors (considering a possible replacement at CERN of the above-mentioned robotic arms with arms developed entirely by the section) and collaboration on the re-implementation of low-level code for position and speed control bug fixing and torque control enablement. A further paper produced during the master's thesis and concerning modeling and control of a variable-length flexible beam on inspection ground robot [P1], was published at the 2022 IEEE International Conference on Robotics and Automation (ICRA).

During the coming year, the dynamic model of the system will be improved and extended, and new identifications will be made to ensure a complete adherence of the simulation to the real model. The theoretical foundations of the control will then be investigated for performance evaluation and further improvements and modifications. The control laws will be tested on both case studies in different

application cases. It is envisaged that the work will lead to the production and submission of one or more scientific articles to internationally renowned journals.

4. Research products:

[P1]

Scientific paper: Modelling and control of a variable-length flexible beam on inspection ground robot Authors: G. D'Ago, M. Lefebvre, L. R. Buonocore, F. Ruggiero, M. Di Castro, V. Lippiello Conference: IEEE International Conference on Robotics and Automation (ICRA), 2022 Year of publication: 2022 Current state: published.

[P2]

Scientific paper: Modelling and identification methods for simulation of cable-suspended dual-arm robotic systems

Authors: G. D'Ago, M. Selvaggio, A. Suarez, F. J. Ganán Onieva, L. R. Buonocore, V. Lippiello, A. Ollero, F. Ruggiero

Conference: IEEE International Conference on Robotics and Automation (ICRA), 2023 **Current state**: submitted.

5. Conferences and seminars attended

6. Activity abroad:

7. Tutorship