

PhD in Information Technology and Electrical Engineering Università degli Studi di Napoli Federico II

PhD Student: Giancarlo D'Ago

Cycle: XXXVII

Training and Research Activities Report

Academic year: 2022-23 - PhD Year: Second

Giomeanto D'Ago

Tutor: Prof. Fabio Ruggiero

Falio Ruggiero

Co-Tutor: Dr. Eng. Luca Rosario Buonocore Prof. Vincenzo Lippiello

Date: December 12, 2022

PhD in Information Technology and Electrical Engineering

1. Information:

- PhD student: Giancarlo D'Ago
- **DR number:** DR996238
- **Date of birth:** 13/09/1997
- > Master Science degree: Automation Engineering University of Naples 'Federico II'
- Doctoral Cycle: XXXVII
- Scholarship type: CERN Doctoral Student Programme
- Tutor: Prof. Fabio Ruggiero
- > Co-tutor: Dr. Eng. Luca Rosario Buonocore, Prof. Vincenzo Lippiello

Activity	Type ¹	Hours	Credits	Dates	Organizer	Certificate ²
Is control a solved problem for aerial robotics research?	Seminar	1	0.2	12/01/2023	DIETI	Y
10th BE-CEM Student's Coffee	Seminar	1	0.2	20/01/2023	CERN	Y
Astrononauts-in-the-loop mobile manipulation for planetary surface infrastructure mainteinance	Seminar	1	0.2	25/01/2023	CERN	Y
Multi-robot control of heterogeneous herds	Seminar	1	0.2	16/02/2023	DIETI	Y
Study on: (i) Theoretical background on partial feedback linearization, zero- dynamic nonlinear analysis (ii) Dynamic model in MATLAB of a cable- suspended dual arm articulated robot (iii) Simulation in C++, ROS, Gazebo of model-based control on simplified dual- arm cable suspended structures with implementation of trajectory tracking for passive joints. Preparation of the paper "Modelling and identification methods for simulation of cable- suspended dual-arm robotic systems". Laboratory activity: (i) Testing Aruco markers code detection for pose estimation (ii) Coding the control of lightweight manipulators, testing different reference	Research		9.2	From 01/01/2023 to 28/02/2023		

2. Study and training activities:

Cycle: XXXVII

trajectories (iii) First						
implementation and testing						
of a model-free control on a						
dual-arm cable suspended						
robot. Evaluation of the						
performances.						
From Romeo & Juliet to						
OceanOneK Deen-Sea	Seminar	1	0.2	23/03/2023	DIETI	Y
Robotic Exploration	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	••-			-
ABP Alumni Forum	Seminar	4	0.8	27/03/2023	CERN	V
Academic training lecture	Semma		0.0	21/03/2023	CLINI	1
Academic training lecture	Seminar	5	1.0	27-31/03/2023	CERN	Y
Series Open Source						
How to Publish Under the	а ·	2	0.4	05/04/0000		37
CARE-CRUI Open Access	Seminar	2	0.4	05/04/2023	UNINA IEEE	Ŷ
Agreement with IEEE						
Study on:						
(i) Rework on the						
generation of the dynamic						
model in MATLAB of a						
cable-suspended dual arm						
articulated robot (CERN's						
Cranebot); (ii) Preliminary						
identification of CERN's						
Cranebot dynamics.						
Preparation of the paper						
"Modelling and						
identification methods for						
simulation of cable-						
suspended dual-arm robotic						
systems" Pavision of the T						
PO Bener Li Cuenrui						
No Faper Li Guallul,						
Ainyang Liu, Lolanno						
Guseppe - Rotor I M: A						
Flexible Simulator for						
Aerial Transportation and						
Manipulation". Laboratory				From		
activity: (1) Configuration of	Research		76	01/03/2023 to		
Ingenia Drivers for			,	30/04/2023		
Harmonic Drives motors of				50/01/2025		
the FCC Long Reach						
Manipulator						
(ii) Generation of the						
trajectories for the						
excitation of the oscillation						
dynamics of CERN's						
Cranebot robotic platform						
(iii) Coding control for						
simulataneous trajectory						
tracking for a dual arm						
system (iv) Measurements						
of Cranebot oscillations						
through PTZ and ArUco						
Markers pose estimation in						
two case of study. free						
oscillation and oscillation						
generated through the						
movement of the arms						
(y) Mounting motion						
(v) Woulding motion						
capture system setup for						

Cycle: XXXVII

robots (manipulators and						
ground robots) pose						
estimation (vi) Testing						
parallel computing toolbox						
on CERN's clusters						
2023 Spring School on	Course	/	2.0	24-25/05/2023	UNINA	v
Transferable Skills	couise	,	2.0	21 23/03/2023	ermur	1
ATS Seminar on IPAC	Seminar	2	0.4	25/05/2023	CERN	v
2023 oral contributions	Semma	2	0.4	25/05/2025	CERT	1
BE-CEM Technical						
Meeting: ML on crystal	Seminar	1	0.2	23/06/2023	CERN	Y
alignment						
UPM Collaboration on	Saminar	2	0.6	26/06/2022	CEDN	V
Robotics	Seminar	3	0.0	20/00/2025	CEKN	I
Study on: (i) Identification						
of CERN's Cranebot						
dynamics in two cases of						
study: free oscillation and						
oscillation generated						
through the movement of						
the arms (ii) Sim-to-real						
comparison of Cranebot						
arms-induced oscillation						
Preparation and Submission						
of the paper "Modelling and						
identification methods for						
simulation of cable-				From		
suspended dual-arm robotic	Research		6.8	01/05/2023 to		
systems" to Robotics and	researen		0.0	30/06/2023		
Automation Letters (RA-L)				50/00/2025		
Laboratory activity: (i)						
Measurements of Cranebot						
oscillations through PT7						
and ArLico Markers pose						
estimation (ii) Re-testing						
model free oscillation						
suppression control for						
parameters influence						
avaluation (iii) Satur						
motion capture system setup						
software (Vicon Tracker)						
Learn To Be Stable:						
Imitation Learning With	Seminar	15	0.3	05/07/2023	CERN	v
Dynamical Systems	Seminar	1.3	0.5	03/07/2023	ULINI	1
12th DE CEM Student's						
12th DE-CEW Student S	Seminar	1	0.2	05/07/2023	CERN	Y
ARCHE 2025. Advanced Robotia Carabilitian for	Sominar	n	0.4	12/07/2022	CEDM	V
Robotic Capabilities for	Seminar	2	0.4	13/07/2023	CEKN	I
Study and G Theory 1						
Study on: (1) Theory and						
stability consideration						
bening model-free control						
tested in laboratory: (a)				From		
Modelling of a double	Research		9.1	01/07/2022 to		
pendulum, energy definition				31/08/2022		
of a double pendulum (b)						
Relationship configuration-						
potential energy (c) State of						
the art on energy-based						

Cycle: XXXVII

a antical a face that design arrives						
of an A grabat (d) State of						
of all Actobol (d) State-of-						
the art on energy-based up-						
swing of an Acrobot with						
collocated partial feedback						
linearization, study on its						
application for the down-						
swing; (ii) Simulation and						
testing of an Acrobot and its						
energy under energy-based						
controls.						
Laboratory activity: (1)						
Starting implementation of						
the Motion Capture class in						
the CRF (CERN Robotic						
Framework) (11) Prepared						
and submitted CERN's						
CRANEBot Documentation						
Reconfigurable Robots for	Seminar	1	0.2	06/09/2023	CERN	Y
Design and validation of a						
safe mechatronic system for						
the handling of radioactive	Seminar	1	0.2	06/09/2023	CERN	Y
sources						
Mixed Reality human-robot						
interface for remote						
operations in accelerator	Seminars	1	0.2	27/10/2023	CERN	Y
facilities						
Study on: (i) Theory and						
stability consideration						
behind model-free control						
tested in laboratory.						
Energy-based down-swing						
of an Acrobot with						
collocated partial feedback						
linearization. Study on zero-						
dynamics. (ii) Simulation						
and testing of an Acrobot						
and its energy under						
energy-based controls (iii)-						
Small angle approximation						
for double pendulum and						
normal modes of				From		
oscillation.	Research		9.4	01/09/2023 to		
Review Paper "RotorTM: A				31/10/2023		
Flexible Simulator for						
Aerial Transportation and						
Manipulation" for						
Transaction on Robotics (T-						
KO).						
Freparation and Submission						
of the paper "Modelling and						
Simulations of Dual Asso						
Cable Suspended Debatic						
Systems" to Debotics and						
Autonomous System						
Autonomous System.						
Laboratory activity:						

Cycle: XXXVII

			1	1	1	1
(i) Implementation of						
Motion Capture class in the						
CRF (CERN Robotic						
Framework). First						
implementation of a Mock						
class and Development of						
Unit Testing. (ii) Testing						
and Fixing PTZ Cameras on						
CERN Robotic platform						
(iii) Preliminary mechanical						
analysis and market						
research for the integration						
of a Encoder for vertical						
rotational joint of CERN's						
CRANEBot. (iv)						
Installation of an IMU on						
CERN Robotic Platform.						
Performance analysis for						
pose estimation detection						
with comparison with						
Motion Capture ground						
truth. (v) First						
implementation in						
simulation of an MPC						
control for CERN robotic						
platform (vi) Real tests on						
University of Seville's long-						
reach aerial dual-arm						
robotic platform of						
noncollocated partial						
feedback linearization for						
oscillation suppression.						
Convincing Scientific	Course	20.0	2.0	06/11/2023 -	CEDN	V
Presentations	Course	20.0	2.0	20-11-2023	CEKN	I
Review Paper "On the						
Collocated Form with Input						
Decoupling of Lagrangian						
Systems" for Transaction on						
Robotics (T-RO).						
Laboratory activity: (i) Full						
Implementation of Vicen						
A Dis and Mation Conture						
APIS and Motion Capture						
Bahatia Error anarla) Unit						
KODOLIC Framework). Unit						
(ii) Implementation and a f	- ·		• •	From		
Gable IMU SE2 with	Research		2.9	01/11/2022 to		
EtherCAT communication				31/12/2022		
for CPE (CEPN Pobotic						
Framework) (iji)						
Preliminar restructuring of						
the Oscillation Suppression						
module for (CFRN Robotic						
Framework) Installation						
and linking of Acados						
and mixing of Acados						
libraries for MPC control						
libraries for MPC control (iv) Tests Model-Free						
libraries for MPC control (iv) Tests Model-Free control on planar case by						

Training and Research Activities Report

PhD in Information Technology and Electrical Engineering

Cycle: XXXVII

closing the loop with the			
IMU. First trials on			
combined 3D oscillations			
with first joint redirection.			
(v) First successful tests of			
MPC control for oscillation			
suppression for a planar			
case with robustness to			
change of height.			

1) Courses, Seminar, Doctoral School, Research, Tutorship

2) Choose: Y or N

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	0.0	0.8	9.2	0.0	10.0
Bimonth 2	0.0	2.4	7.6	0.0	10.0
Bimonth 3	2.0	1.2	6.8	0.0	10.0
Bimonth 4	0.0	0.9	9.1	0.0	10.0
Bimonth 5	0.0	0.6	9.4	0.0	10.0
Bimonth 6	2.0	0.0	2.9	0.0	4.9
Total	4.0	5.9	45.0	0.0	54.9
Expected	30 - 70	10 - 30	80 - 140	0 - 4.8	

2.1. Study and training activities - credits earned

3. Research activity:

Long-reach robotic manipulation aims to perform inspection and maintenance tasks in difficult-toaccess workspaces. A recent challenge in this field is the execution of operations in high-altitude areas (e.g., maintenance of power lines, inspection of infrastructures, etc.) where the direct access of humans is dangerous or costly. It is clear that, in this context, the use of conventional serial or parallel robots is impractical due to their limited workspace, and alternative robot designs must be leveraged. In these scenarios, manipulators in a long-reach pendulum configuration are usually employed. They are constructed using one or multiple cables that: (i) dramatically decrease the weight of the overall robotic system compared to using rigid links only; (ii) provide orders of magnitude larger end-effector workspace without affecting the weight of the manipulators' base; and (iii) exhibit superior resilience to absorb external disturbances such as impacts and collisions. Despite the clear advantages of using cablesuspended long-reach manipulators, they are generally more difficult to control due to the presence of non-actuated and flexible elements (cables) that make the entire system prone to uncontrolled oscillation.

The conducted research aims to model, identify, simulate, and control this type of systems. The study carried out during this second year involved the improvement and refinement of the kinematics and dynamic models developed during the first year with the aim of better capturing the dynamic effect of a suspended articulated system.

UniNA ITEE PhD Program

Cycle: XXXVII

Author: Giancarlo D'Ago

For the study of the dynamics, the behaviour of two case studies has been analysed: the first system is a bi-manual system designed by the BE-CEM-MRO section at the European Organization for Nuclear Research (CERN) for the inspection and maintenance of particle accelerator-related infrastructures. In this case, a set of pulleys and steel ropes, coupled through a hook to a lower platform, serves as a lifting mechanism to hoist an articulated system (two Pilz PRBT6 arms) from an overhead crane. The second is an aerial cable-suspended dual-arm system developed by the GRVC Robotics Labs at the University of Seville used to install bird diverters on high-voltage power line. In that system, four belts, tied in a parallel pattern to a drone and to a lower platform, hold two four-DoF (Degree of Freedom) manipulators.

Long-reach cable-suspended articulated system modelling was carried out using the screw theory and Newton-Euler approaches. Since the real cable structure forms a closed kinematic chain, an equivalent open kinematic chain is adopted to simulate these systems using customary rigid-body dynamic simulators. The equivalence between the adopted open kinematic chain and the real system has been established by finding a set of dynamic parameters that maximize the similarity of their dynamic response. A set of experiments was conducted on both the systems case of study, and an identification procedure involving the solution of an optimization problem was developed. The experiments of the second year involved also the movement of the arms, so to capture the coupling dynamic effect between the robotic arms and the suspension mechanism. Once an estimate has been obtained, parameters are appropriately replaced into the model, and the behaviour of the simulated system is compared with a new set of experiments on the real platforms. During the second year a more realistic simulation setup has been developed. This has brought to a faster development of control strategies, as well as a safe testing environment. This research work led to the production of a conference paper [P2] submitted in September 2023 to Elsevier Robotics and Autonomous Systems (RAS) Journal, which is the result of a collaboration between CERN, PRISMA Lab of University of Naples 'Federico II' and GRVC Robotics Lab of University of Seville.

The control problem addressed during the second year is the suppression of the oscillation of the system during the transportation of the dual-arm robotic system. As anticipated, despite the advantages of using cable-suspension, the system is prone to difficult-to-control oscillations, hence the objective of the control is to reduce the settling time of the oscillation. This first phase of the research addresses the actuation of the articulated system only to accomplish the suppression task. Three different control strategies have been studied. The first is a model-based control strategy, namely non-collocated partial feedback linearization, suitable for underactuated system. While during the first-year simulations through mathematics computation softwares (MATLAB), rigid-body dynamic simulators (Gazebo) and Operating Systems for Robotics (ROS) were carried out, the second year has led to real tests of this control strategies on the aerial platform of the University of Seville. This research work is suitable to be submitted to a conference at the beginning of the third year. The second is a model-free energy-based control technique, which has been implemented and tested both at University of Seville and at CERN. The third strategy is a Model Predictive control approach, which is currently under testing for the CERN platform. It is envisaged that these works will lead to the production and submission of one or more scientific articles to internationally renowned journals.

Cycle: XXXVII

During the coming year, the theoretical foundations of the controls will be further investigated for performance evaluation and a full implementation and testing in a real case scenario is foreseen. The control laws will be tested in different application cases and in real operation scenarios.

4. Research products:

[P1]

Scientific paper: Modelling and control of a variable-length flexible beam on inspection ground robot Authors: G. D'Ago, M. Lefebvre, L. R. Buonocore, F. Ruggiero, M. Di Castro, V. Lippiello Conference: IEEE International Conference on Robotics and Automation (ICRA), 2022 Year of publication: 2022 Current state: published.

[P2]

Scientific paper: Modelling and identification methods for simulation of cable-suspended dual-arm robotic systems

Authors: G. D'Ago, M. Selvaggio, A. Suarez, F. J. Ganán Onieva, L. R. Buonocore, V. Lippiello, A. Ollero, F. Ruggiero

Conference: IEEE International Conference on Robotics and Automation (ICRA), 2023 **Current state**: submitted.

5. Conferences and seminars attended

6. Periods abroad and/or in international research institutions

7. Tutorship

8. Plan for year three

The research of the third year will cover the oscillation suppression during transportation of dualarm robotic systems. It's foreseen a full implementation and integration of the control for real case scenarios. The second part of the third year could cover the problem of reactionless manipulation for the enhancing of the efficiency of the teleoperation for cable-suspended dual-arm systems. A draft title of the thesis is "Dynamic compensation algorithms for manipulation and transportation of non-rigid robotic platforms".