

PhD student Riccardo Carbone Agile Development for Safety-Critical Software

Tutor: Valentina Casola

Cycle: XXXVII Year: 1

My background

- MSc degree: Computer Engineering
- Research group: Seclab
- PhD start date: 01/11/2021
- No scholarship
- Software Embedded Engineer at Rete Ferroviaria Italiana S.p.A.
 - Research and Development Department (no company funded scholarship)

Research field of interest

Critical Software Engineering

- State of the Art:
 - Software Development Life Cycle has to follow rigorous standards;
 - Standards define SDLC requirements based on a Waterfall model of process (see Fig. 1).
- Challenges:
 - Management of software requirements changes;
 - Poor customer involvement;
 - Slow feedback for design decisions;
 - Slow innovation of critical systems.
- Proposals:
 - Agile Hybrid Software Development;
 - Model-Based Software Development.

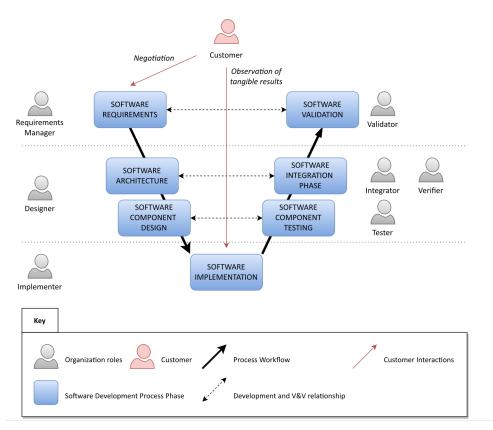


Fig. 1: The V-Model

Summary of study activities

Ad hoc PhD courses / schools:

- Virtualization technologies and their applications
- Statistical data analysis for science and engineering research
- Innovation management, entrepreneurship and intellectual property

Seminars:

- Workshop «La piattaforma ACC di RFI»
- Introduction to Model Based System Engineering and System Validation with SLRT

Research activity 1: "Agile software development for safety-critical systems"

1. Problem

The waterfall process model is not suitable for the innovation of safety-critical software since the impact of adopting new paradigms or technologies is not predictable.

3. Methodology

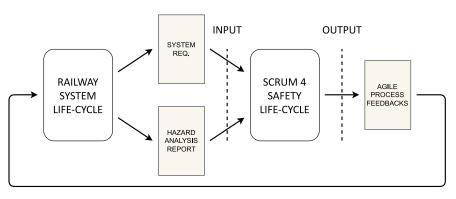


Fig. 2: Scrum For Safety: Global Perspective

2. Objective

Investigate the potential opportunities and challenges of adopting agile methodologies in critical fields.

4. Results

An agile evolutive life cycle helps:

- reduce software requirements uncertainty working with customers;
- decreasing delivery time;
- Making developers reactive to software errors.

However, guidelines and tools to lightweight check and maintain software quality must be established within the organization to avoid compromising team agility.

Research activity: "SIL4 Middleware for railway signalling applications"

1. Problem

The design of a distributed signaling infrastructure requires the recurrent management of subsystem replication to check critical outcome variables, safe protocol stacks, and device drivers for communication features.

3. Methodology

- The software was defined and developed following the S4S agile software development process.
- Next year the software prototype will be used to check conformity with EN 50128.

2. Objective

Define the requirements and the architecture of a reusable SIL4 Middleware to manage redundancy and communications in RFI railway signaling infrastructures.

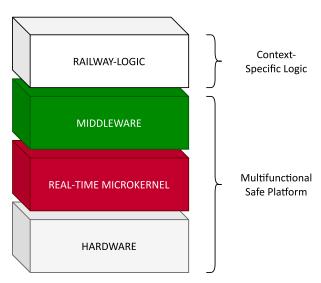


Fig. 3: Multifunctional platform for railway signaling applications

Products for Activity 1

	Journal Article:	
	o Title: Scrum for safety: an agile methodology for safety-critical softwa	re
	systems;	
[P1]	o Author(s): M. Barbareschi, S. Barone, R. Carbone, V. Casola;	
	o Journal: Springer - Software Quality Journal (SQJ);	
	o Current status: published;	
	o Year: 2022.	
	Conference Poster:	
	o Title: S4S: Agile Methodology Compliant to EN50128;	
[P2]	o Author(s): M. Barbareschi, S. Barone, R. Carbone, V. Casola;	
	o Conference: International Railway Safety Council (IRSC);	
	o Year: 2022.	

Products for Activity 2

[P1]	 "Specifica dei Requisiti Software del Middleware". Author(s): M. Barbareschi, S. Barone, R. Carbone, V. Casola, G. Ricci; Project: RFI SIL4 Platforms; Current status: under revision; Year: 2022.
[P2]	 "Specifica di Design dello strato Middleware". Author(s): S. Barone, R. Carbone, V. Casola, V. Coppola, S. Della Torca; Project: RFI SIL4 Platforms; Current status: under revision; Year: 2022.
[P3]	 Middleware Prototype. Author(s): S. Barone, R. Carbone, V. Coppola, S. Della Torca; Project: RFI SIL4 Platforms; Current status: under testing; Year: 2022.

