

PhD in Information Technology and Electrical Engineering Università degli Studi di Napoli Federico II

PhD Student: Marco Boddi

Cycle: XXXVII

Training and Research Activities Report

Academic year: 2022-23 - PhD Year: Second

Booly ent signature

Tutor: prof. Antonio De Maio

<u>tutor signature</u> Antonio De Moio

Co-Tutor:

Date: October 21, 2023

PhD in Information Technology and Electrical Engineering

1. Information:

PhD student: Marco Boddi

PhD Cycle: XXXVII

- > DR number: 995996
- Date of birth: 03/04/1984
- > Master Science degree: Telecommunications Engineering, University of Pise
- Scholarship type: ad-hoc agreement between UniNa and the Presidency of the Council of Ministers if Italy
- > Tutor: Prof. Antonio De Maio

Activity	Type ¹	Hours	Credits	Dates	Organizer	Certificate ²
"Simulation of Radar	Seminar	1	0.2	14 / 11 /	IEEE	To be
Sea Clutter", from the				2022	AESS	released at
2022 Virtual					(Aerospace	the end of the
Distinguished Lecturer					and	2022-2023
Series.					Electronic	Lecturer
					Systems	Series
					Society),	
					lecturer	
					Rosenberg	
"Gravity-Modeling	Seminar	1	0.2	30 / 11 /	IEEE	To be
Considerations in High-				2022	AESS	released at
Integrity Inertial					(Aerospace	the end of the
Systems", from the 2022					and	2022-2023
Virtual Distinguished					Electronic	Lecturer
Lecturer Series.					Systems	Series
					Society),	
					lecturer	
					Braasch	
"Radar Technology and	Seminar	1	0.2	05 / 12 /	IEEE	To be
Sustainability: How to				2022	AESS	released at
Conjugate Innovation					(Aerospace	the end of the
and Social Duties", from					and	2022-2023
the 2022 Virtual					Electronic	Lecturer
Distinguished Lecturer					Systems	Series
Series.					Society),	
					lecturer	
					Farina	
"Cognitive Radars",	Seminar	1	0.2	14/12/	IEEE	To be
trom the 2022 Virtual				2022	AESS	released at
Distinguished Lecturer					(Aerospace	the end of the
Series.					and	2022-2023

2. Study and training activities:

Cycle: XXXVII

	1		1	1	1	1
					Electronic Systems Society), lecturer Greco	Lecturer Series
"Publishing Open Access IEEE Journal Articles under the Care Crui Agreement in Italy"	Seminar	1	0.2	09 / 11 / 2022	IEEE – the Institute of Electrical and Electronics Engineers, lecturer Lukacs	Y
"Waveform Design for Spectral Coexistence between Radar and Communication Systems"	Seminar	1	0.2	24 / 11 / 2022	IEEE-ISAC (Integrated Sensing and Communic ations), lecturer De Maio	Y
"Data mining the output of quantum simulators – from critical behavior to algorithmic complexity", from the Quantum Science Technology seminars' series.	Seminar	1	0.2	11 / 11 / 2022	Unina and CNR (Consiglio Nazionale delle Ricerce), Lecturer Dalmonte	To be released
"Connecting the dots: Investigating an APT campaign using Spunk"	Seminar	2	0.4	11 / 11 / 2022	Unina DIETI, Lecturer Forzieri	To be released
"Cybercrime and Information Warfare: National and International Actors"	Seminar	2	0.4	18 / 11 / 2022	Unina DIETI, Lecturer Paganini	To be released
"From Cyber Situational Awareness to Adaptive Cyber Defense: Leveling the Cyber Playing Field"	Seminar	2	0.4	13 / 12 / 2022	Unina DIETI, Lecturer Albanese	To be released
"Threat Hunting and Incident Response"	Seminar	2	0.4	13 / 12 / 2022	Unina DIETI, Lecturer Albanese	To be released
Study of the following papers:	Researc h		3	Nov-Dec 2022		

Cycle: XXXVII

"Radar Waveform	
Design in a	
Spectrally Crowded	
Environment Via	
Nonconvex Quadratic	
Optimization" (A.	
Aubry, A. De Maio,	
M. Piezzo, A.	
Farina);	
• "A new radar	
waveform design	
algorithm with	
improved feasibility	
for spectral	
coexistence" (A.	
Aubry, A. De Maio,	
Y. Huang, M. Piezzo,	
A. Farina);	
"DOA Estimation for	
UCA in the Presence	
of Mutual Coupling	
via Error Model	
Equivalence" (W.	
Hu, O. Wang):	
• "Direction Finding in	
the Presence of	
Mutual Counling" (B.	
Friedlander, A. J.	
Weiss)	
• Software modelling	
and simulations for	
managing multual	
counting in antenna	
arrays and joint array	
calibration and signal	
detection/estimation	
Initial work for a Researc 2 Dec 2022	
research paper on a h	
novel procedure for the	
iterative estimation of	
the Direction of Arrival	
of incoming signals in a	
receiving array affected	
by antenna coupling.	
Submission of the paper	
abstract for the NATO	
Radar Research	
Specialized Masting on	

Cycle: XXXVII

"New Mathematics for Multi-Dimensional Radar Systems						
On the challenges and impact of Artificial Intelligence in the Insurance domain	Course	12	3	Nov 2022, exam taken on 15 / 01 / 2023	Dieti / Unina, Lecturer Ricciardi Celsi	Y
Industry 4.0 Fundamentals in Bosch Applications	Seminar	10	2	23-26 / 01 / 2023	Dausy / University of Bari and Bosch, Lecturers Bruni, Dotoli	Y
 Preparation and submission of a research paper to the conference NATO RSM- 319 (Research Specialist Meeting) on "New Mathematics for Multidimensional Radar Systems": M. Boddi, M. Rosamilia, A. Aubry, A. De Maio, "Iterative Direction- of-Arrival Estimation for a Uniform Circular Array in the Presence of Mutual Coupling". Participation to the conference NATO- RSM-319 (Research Specialist Meeting) on "New Mathematics for Multidimensional Radar Systems", ICMS (International Centre for Mathematical Sciences) Edinburgh 21-23.02.2023. Presentation on the paper submitted. 	Researc		7	Jan-Feb 2023		

Cycle: XXXVII

 Study of the following papers: J. Dai, X. Bao, N. Hu, C. Chang, W. Xu, "A Recursive RARE Algorithm for DOA Estimation with Unknown Mutual Coupling"; M. Lin, L. Yang, "Blind Calibration and DOA Estimation with Uniform Circular Arrays in the Presence of Mutual Coupling"; W. Hu, "DOA Estimation for UCA in the Presence of Gain-Phase Errors". 	Seminar	1	0.2	01/03/	IEEE	To be
Array Signal Processing", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	2023	AESS (Aerospace and Electronic Systems Society), lecturer Li	released at the end of the 2022-2023 Lecturer Series
"Ultra Wide Band Surveillance Radar", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	21 / 03 / 2023	IEEE AESS (Aerospace and Electronic Systems Society), lecturer Davis	To be released at the end of the 2022-2023 Lecturer Series
"Evolving Cyber Systems in Avionics", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	06/04/ 2023	IEEE AESS (Aerospace and Electronic Systems Society), lecturer Kramer	To be released at the end of the 2022-2023 Lecturer Series
"Introduction to MIMO Radar Waveforms",	Seminar	1	0.2	13 / 04 / 2023	IEEE AESS	To be released at

Cycle: XXXVII

from the 2023 Virtual Distinguished Lecturer Series.					(Aerospace and Electronic Systems Society), lecturer Sun	the end of the 2022-2023 Lecturer Series
"Design of Efficient Electrical Power Systems for Small Spacecraft", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	20 / 04 / 2023	IEEE AESS (Aerospace and Electronic Systems Society), lecturer Gonzalez- Llorente	To be released at the end of the 2022-2023 Lecturer Series
WiFi and BlueTooth Low Energy: Architecture and Security	Seminar	30	6	9-10-16- 17 / 03 /2023	CNIT - Consorzio Nazionale Interuniver sitario Telecomuni cazioni / University of Rome Tor Vergata, lecturer Gringoli	Y
Procedures and strategies for the evaluation of direction- finding performances of dual-polarization log- periodic circular antenna arrays. Production of internal report "Performance bounds for the DoA estimation with a log- periodic circular antenna array (with two possible polarizations)". Derivation of classical DoA estimators with arrays of directional	Researc h		4	Mar-Apr 2023		

Cycle: XXXVII

Author: Marco Boddi

-1						
elements and dual						
polarizations.						
Study of the following	Researc			Mar-Apr		
research papers:	h			2023		
• "Data adaptive						
spectral analysis						
methods" (R. T.						
Lacoss);						
• "High-Resolution						
Frequency-						
Wavenumber						
Spectrum Analysis"						
(I Capon):						
(J. Capon),						
• DOA Estimation for						
UCA in the Presence						
of Mutual Coupling						
via Error Model						
Equivalence" (W.						
Hu, Q. Wang);						
• "On the Performance						
Analysis of the						
MVDR Beamformer						
in the Presence of						
Correlated						
Interference" (M. D.						
Zoltowski)						
"Iron Stomachs and	Seminar	1	0.2	10 / 05 /	IEEE	To be
White Knuckles:				2023	AESS	released at
Lessons Learned from					(Aerospace	the end of the
60 Years of Flight					and	2022-2023
Testing", from the 2023					Electronic	Lecturer
Virtual Distinguished					Systems	Series
Lecturer Series					Society)	Berres
Lecturer Series.					lecturer	
					Draagah	
"Electrome cristics or 1	Cominan	1	0.2	19/05		Taba
Electromagnetics and	Seminar	1	0.2	18/05		10 be
wieter wave Kadar				/2023	AESS	released at
Scattering Theory",					(Aerospace	the end of the
trom the 2023 Virtual					and	2022-2023
Distinguished Lecturer					Electronic	Lecturer
Series.					Systems	Series
					Society),	
					lecturer	
					Hellstein	
"Cognitive EW: Using	Seminar	1	0.2	31 / 05 /	IEEE	To be
AI to Solve EW				2023	AESS	released at
Problems", from the					(Aerospace	the end of the
2023 Virtual					and	2022-2023

UniNA ITEE PhD Program

Cycle: XXXVII

Distinguished Lecturer Series.					Electronic Systems Society), lecturer Haigh	Lecturer Series
"A Day in Space: Analog Astronaut Training", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	15 / 06 / 2023	IEEE AESS (Aerospace and Electronic Systems Society), lecturer Ramirez	To be released at the end of the 2022-2023 Lecturer Series
"Advances in Digital Avionics and Space Systems", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	22 / 06 /2023	IEEE AESS (Aerospace and Electronic Systems Society), lecturer Sabatini	To be released at the end of the 2022-2023 Lecturer Series
"Quantum Algorithms for Aerospace and Electronic Systems: Trends and Applications", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	28/06/ 2023	IEEE AESS (Aerospace and Electronic Systems Society), lecturer Koch	To be released at the end of the 2022-2023 Lecturer Series
Lectures "SET-257 RLS Compressive Sensing Techniques for Radar and ESM Applications"	Seminar	16	1.6	15-16 / 05 / 2023	The NATO Science and Technology Organizatio n, Lecturers Anitori, De Maio, Farina, Ertin, Martorella	Y
Initial work for the preparation of a research paper "Polarimetric Sparse Iterative Procedures for DOA Estimation", to be	Researc h		4	May-Jun 2023		

	1					
submitted to the 2023						
IEEE International						
Workshop on						
Technologies for						
Defense and Security:						
Definition of system						
• Definition of system						
model;						
• Design and						
adaptation of existing						
sparse procedures for						
the case of dual						
polarization;						
• Computer						
simulations and						
analysis:						
anarysis,						
• Preparation and						
submission of the						
extended abstract.						
Study of the following	Researc		1	May-Jun		
research papers:	h			2023		
• "Angle and						
polarization						
estimation using						
ESPRIT with a						
polarization sensitive						
array (LLi P T						
allay (J. Ll, K. T.						
Compton);						
• "Compressed sensing						
based joint DOA and						
polarization angle						
estimation for sparse						
arrays with dual						
polarized antennas"						
(B. K. Chalise, Y. D.						
Zhang B Himed)						
• "SPICE: A sparse						
• SITCL. A sparse						
covariance-based						
estimation method						
tor array processing"						
(P. Stoica, P. Babu, J.						
Li);						
• "Sparse methods for						
direction-of-arrival						
estimation" (Z. Yang.						
J. Li. P. Stoica L						
Xie).						
"Delay/Disruption-	Seminar	1	0.2	06/07/	IFFF	To be
Tolerant Networking	Seminar	1	0.2	2023	AESS	released at
101clant Networking				2023	ALSS	i cicascu al

Cycle: XXXVII

(DTN) for Deep Space Networks", from the 2023 Virtual Distinguished Lecturer Series.					(Aerospace and Electronic Systems Society), lecturer Wang	the end of the 2022-2023 Lecturer Series
"Design and Simulation of Nanosatellites", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	13 / 07 / 2023	IEEE AESS (Aerospace and Electronic Systems Society), lecturer Ramon- Gonzalez	To be released at the end of the 2022-2023 Lecturer Series
"INFOrmation and Resource Management (INFORM) for Accurate Tracking of Resident Space Objects", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	26/07/ 2023	IEEE AESS (Aerospace and Electronic Systems Society), lecturer Singla	To be released at the end of the 2022-2023 Lecturer Series
"3D ISAR: Techniques and Applications", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	01 / 08 / 2023	IEEE AESS (Aerospace and Electronic Systems Society), lecturer Rosenberg	To be released at the end of the 2022-2023 Lecturer Series
"Integrated Sensing and Communications: A Dual-Blind Deconvolution Perspective", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	08 / 08 / 2023	IEEE AESS (Aerospace and Electronic Systems Society), lecturer Vijay Misra	To be released at the end of the 2022-2023 Lecturer Series
"Foliage Penetration Radar", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	15 / 08 / 2023	IEEE AESS (Aerospace and	To be released at the end of the 2022-2023

Cycle: XXXVII

				Electronic Systems Society), lecturer Davis	Lecturer Series
Completion and submission of the research paper "Polarimetric Sparse Iterative Procedures for DOA Estimation", submitted to the 2023 IEEE International Workshop on Technologies for Defense and Security: • Refinement of the system model; • Extension of computer simulations and analysis.	Researc h	5	Jul-Aug 2023		
 Study of the following research papers: "Multi-snapshot spectrum sensing for cognitive radar via block sparsity exploitation" (A. Aubry, V. Carotenuto, A. De Maio, M. A. Govoni); "Weighted SPICE: A unifying approach for hyperparameter-free sparse estimation" (P. Stoica, D. Zachariah, J. Li); "An Introduction To Compressive Sampling" (E. J. Candès, M. B. Wakin); "Compressed Sensing" (D. L. Donoho) 	Researc				

Cycle: XXXVII

PhD Summer School "Frontier Technologies for Space 2.0 Communications"	Doctoral School	24	5	29-30-31- 01 / 08-09 / 2023	University of Trento and IEEE- AESS (Aerospace and Electronic Systems Society), Lecturers Sacchi, Ruggieri, Stallo, Cheung, Granelli, Guidotti, Bassoli, Notzel, Ferrara, Rossi, Codispoti, Popescu, Grayver, Marchese, Slim Alouini	Y
"Advances in Detect and Avoid for Unmanned Aircraft Systems and Advanced Air Mobility", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	14 / 09 / 2023	IEEE AESS (Aerospace and Electronic Systems Society), lecturer Fasano	To be released at the end of the 2022-2023 Lecturer Series
"Recent Research on Deep Learning Based Radar Automatic Target Recognition", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	21/09/ 2023	IEEE AESS (Aerospace and Electronic Systems Society), lecturer Majumder	To be released at the end of the 2022-2023 Lecturer Series
"An Introduction to Quantum Computing and Data Fusion", from the 2023 Virtual	Seminar	1	0.2	28 / 09 /2023	IEEE AESS (Aerospace and	To be released at the end of the 2022-2023

Cycle: XXXVII

Distinguished Lecturer Series.					Electronic Systems Society), lecturer Govaers	Lecturer Series
"Measurement Extraction for a Point Target From an Optical Sensor", from the 2023 Virtual Distinguished Lecturer Series.	Seminar	1	0.2	10 / 10 /2023	IEEE AESS (Aerospace and Electronic Systems Society), lecturer Bar- Shalom	To be released at the end of the 2022-2023 Lecturer Series
"Multiple-Hypothesis Tracking", from the 2023 Virtual Distinguished Lecturer Series. **	Seminar	1	**	26 / 10 /2023	IEEE AESS (Aerospace and Electronic Systems Society), lacturer	To be released at the end of the 2022-2023 Lecturer Series
Review of the research paper "Polarimetric Sparse Iterative Procedures for DOA Estimation", submitted to the 2023 IEEE International Workshop on Technologies for Defense and Security, based on feedbacks and requests from IEEE reviewers.	Researc h		2	Sep-Oct 2023	Coraluppi	
Study of the following research papers: "Signal recovery from partial information via orthogonal matching pursuit" (J. Tropp, A.C. Gilbert); "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,"	Researc h		2	Sep-Oct 2023		

Training and Research Activities Report

PhD in Information Technology and Electrical Engineering

(E. Candès, J. Romberg,			
Т. Тао).			

1) Courses, Seminar, Doctoral School, Research, Tutorship

2) Choose: Y or N

NOTES

* Seminar attended within the 2023 Virtual Distinguished Lecturer Series. By mistake, not included within the periodic BSR Report. The relevant credits (0.2) are not included in the total in the following paragraph.

** Seminar included within the 2023 Virtual Distinguished Lecturer Series, scheduled before the end of the 2nd PhD year but not yet attended at the time of this TRAT Report. The relevant credits (0.2) are not included in the total in the following paragraph.

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1		3	5	0	8
Bimonth 2	3	2	7	0	12
Bimonth 3		7	5	0	12
Bimonth 4		2.6	5	0	7.6
Bimonth 5		1.2	6	0	7.2
Bimonth 6	5	1	3	0	9
Total	8	16.8	31	0	55.8
Expected	30 - 70	10 - 30	80 - 140	0-4.8	

2.1. Study and training activities - credits earned

3. Research activity:

MAIN TOPIC - Novel algorithms for the Direction-of-Arrival (DoA) estimation in radar and communication problems

The general research topic for this PhD program is represented by the **estimation of the Direction-of-Arrival (DoA) of radio waves**, in non-cooperative environments and when no or little information is available at a radio receiver about the incoming signals. The theoretical framework and the tools of **array processing** help coping with such a task, through the observation of the signal samples available at each antenna element. The estimate of the DOA can be important on its own (for instance in situations where the goal is to localize an emitter) or can in general help optimizing reception in communication systems and detection and tracking performances in radars.

In greater detail, we are especially interested in developing new algorithms or refining existing ones that could achieve satisfactory performances in the presence of multiple dimensions and unknowns (azimuth, elevation, frequency, range, polarization, etc.), while maintaining a reduced computational complexity, suitable for the implementation with current commercial-grade SDR (Software-Defined-Radio) architectures. Although such techniques could be employed in several scenarios, they could be initially

preferably tested and specifically adapted for some radio and radar applications of specific interest (e.g. direction finding in the HF spectrum).

With such a goal and stemming from the studies performed and the research directions identified during the first PhD year, the research activity during the second year has been carried out with respect to the sub-topics and areas reported below.

TOPIC – Classical DoA estimators in circular arrays

Uniform Circular arrays (UCA) play a special role in DOA estimation and for the applications of interest especially. They have long been used throughout history, are widespread all over the world and their symmetrical structure often allows a simpler mathematical description.

Starting from the works of Zoltowski and Mathews, it was shown that the ESPRIT (*Estimation of Signal Parameters via Rotational Invariance Techniques*) method can be conveniently modified (yielding to the so-called UCA-ESPRIT technique) in order to work with circular arrays too.

UCA-ESPRIT emerges as a powerful technique for simultaneous azimuth and elevation estimation, because it automatically provides the estimate pair (azimuth, elevation) in closed form from the eigenvalues of a a matrix associated with the array and does not require the extensive 2D grid searches that other classical methods need (such as MUSIC – *Multiple Signal Classification*). The sine of the elevation, in detail, depends on the absolute value of the eigenvalue. However, in the presence of noise and for low SNR values especially, the eigenvalues can be larger than unity in absolute value, bringing to meaningless elevation estimates.

METHODOLOGY

A modified version of UCA-ESPRIT was devised in order to deal with the above cited situation. Whenever the eigenvalues of interest are equal or smaller than one in absolute value, the UCA-ESPRIT direct estimates of azimuth and elevation are maintained. A different approach is taken on the other hand in the opposite case: the azimuth estimate, which only depends on the phase of the eigenvalue, is maintained, while the elevation estimate is discarded and a new suitable elevation is computed through MUSIC for instance (with a 1D search, since the azimuth is assumed known).

This algorithm was finally tested through computer simulations, for varying SNR conditions and arrays' parameters (number of elements, radius over wavelength, etc).

RESULTS

The simulations show that the newly devised algorithm gets rid of the meaningless elevation estimates which the standard UCA-ESPRIT may produce in case of large eigenvalues. In this respect, it achieves a lower RMSE of the estimates for low SNR values. At the same time the computational complexity is comparable to the standard UCA-ESPRIT and only in a few occurrences (the ones where UCA-ESPRIT fails) requires an additional 1D grid search.

The modified UCA-ESPRIT thus appears as a suitable solution for 2D (azimuth, elevation) DOA estimation in circular arrays under general circumstances.

TOPIC – Antenna coupling conditions

Mutual coupling between the antenna elements is a typical situation in array antennas but can have a significant impact and degrade the resolution capability, robustness to the interference, and accuracy of

DOA estimation. In some applications of interest (in the HF spectrum), additionally, antenna coupling can be even more important, due to large wavelengths and the need to constrain the array size.

Offline and online calibration methods have been developed over time: the former use first a known incoming signal in order to estimate the coupling terms and subsequently compensate for them while estimating the DOAs of unknown signals; online methods on the other hand attempt to jointly estimate the DOAs and the antenna coupling terms from unknown incoming signals.

Armed with the initial research reported in the previous sub-area, we aimed at developing an iterative online method, suited for uniform circular arrays and the UCA-ESPRIT technique.

METHODOLOGY

In uniform circular arrays it is licit to assume the mutual coupling matrix (MCM) collecting all the coupling terms between any two array elements as a complex circulant Toeplitz matrix.

The same beamspace transformation used for deriving UCA-ESPRIT (based on phase-mode excitation) was considered. This transformation allows to describe the UCA array manifold matrix in terms of a beamspace manifold with the typical structure of a ULA (Uniform Linear Array).

The combination of this transformation with a circulant coupling matrix was investigated and shown to produce a VULA (Virtual ULA) manifold, affected with phase and gain errors.

At this stage, ML (Maximum Likelihood) estimates of the unknown DOAs, the signal amplitudes, and the gain and phase error terms can be searched by solving a least-square problem, that is to say minimizing the sum over the observed snapshots of the squared errors between the transformed received samples and the (phase and gain errored) transformed impinging signals.

The resulting function has several unknowns and is not convex. We therefore opted for designing an approximate iterative optimization method, based on an alternating optimization procedure over different blocks of variables. In detail, the method proposed alternately:

- optimizes over the phase and gain error terms and the signal amplitudes, assuming the DOAs fixed. This is achieved through a CD (Coordinate Descent) method;
- then leverages the estimate phase and gain error terms and the signal amplitudes in order to obtain an updated and refined estimate of the DOAs via the application of the UCA-ESPRIT method on the calibrated VULA.

Suitable initialization values for the unknown terms and stop criteria were proposed too.

The behaviour of the algorithm was tested through extensive simulations, taking into account changing SNR ranges, and number and correlation of radio sources.

RESULTS

The proposed iterative calibration method proved to be a fast-converging technique able to provide monotonic decreasing objective function values. The simulation results have demonstrated the capabilities of the proposed method to yield accurate DOA estimates in the presence of mutual coupling. Additionally, in the mathematical description of the optimization problem it was possible to obtain closed

form expressions for the updates of the estimates of the error terms and the signal amplitudes.

TOPIC – Characterization of Dual-polarimetric arrays

Arrays made up of two similar sub-arrays with orthogonal polarizations have attracted special attention recently and have been implemented in some commercial solutions. In general, the availability of two structures with orthogonal polarizations makes such a receiving asset inherently robust with respect to unknown or changing polarization of the incoming radio waves. Polarization is thus an additional (unknown) parameter that can be potentially estimated and exploited.

In practice, hovewer, often only sub-optimal DOA estimation methods are adopted with dul-pol arrays.

The purpose of the research in this sub-topic was thus to initially develop a mathematical characterization of these dual-polarimetric arrays, which could be later used to derive appropriate DOA estimation methods.

METHODOLOGY

A combined array manifold was defined, in which the steering vectors of the two sub-arrays appear. The signal vector at each snapshot can be obtained as the product of this array manifold with the array of the complex amplitudes of the two polarizations.

With the help of the Slepian-Bangs formulas, an expression for the Cramer Rao Bound (CRB) for the estimates of the azimuth and the elevation was obtained, for the cases of known or unknown complex amplitudes.

Similarly, it was possible to derive compact expressions for the ML estimators and the Capon / MVDR (*Minimum Variance Distortionless Response*) estimators.

After laying down these mathematical foundations, a particular use case was considered, with a circular array made up of two sub-arrays of log-periodic elements, respectively with horizontal and vertical polarizations. This structure was specifically designed within the scope of another project and the data of the steering vectors for different HF frequencies and incoming directions were available.

For this specific array, the CRB was computed and compared with the RMSE for the DOA estimates given by the other estimators (dual-pol ML, dual-pol Capon, etc.).

RESULTS

The simulations show that the proposed polarimetric methods achieve the CRB performances limits for growing SNRs. It was worth noting that with equal received overall power, the best performances achieved exploiting both the two subarrays substantially coincide with the best performances obtainable for a single polarimetric array. By the way, the methods optimized for the dual polarimetric array will have the benefit to keep on performing when one of the polarization components goes down significantly.

TOPIC – Sparse Iterative procedure and Dual-polarimetric arrays

Compressed sensing techniques assume a sparse representation of a physical problem (that is to say with only few elements different from zero when represented in an appropriate basis) to achieve the reconstruction of a signal from limited and noisy observations.

With reference to this topic, the extension of some iterative spare algorithms for DOA estimation was investigated for polarimetric sensor arrays equipped with receive pairs of orthogonal / crossed dipoles. For sake of simplicity, elevation was initially ignored and only the azimuth estimated.

METHODOLOGY

A sparse signal model was proposed for the problem, where the atoms are represented by the steering vectors of the two sub arrays for each point of an azimuth search grid, with a similar approach and notation as the ones built in the previous research sub-topic.

Based on this signal model, two well-established iterative and hyperparameter-free strategies, leveraging the signal sparsity, were selected as candidates for Doa estimation, namely SLIM (*Sparse Learning via Iterative Minimization*) and SPICE (*Sparse iterative covariance-based Estimation*).

Two new methods were derived from them and tailored to the polarimetric case of interest, named POL-SLIM and POL-SPICE.

POL-SLIM attempts to solve the problem of estimating the sparse parameters by directly recovering the unknown signal matrix. The optimization problem for the objective function (which depends on the signal matrix, the interference variance and some penalty terms promoting sparsity) was addressed through an iterative procedure, wherein at each step the variables representing the signal matrix and the unknown interference variance are individually optimized by keeping the others fixed.

POL-SPICE, instead, estimates the signal covariance matrix by resorting to a Coordinate Descent optimization of a minimization problem over different group of variables.

RESULTS

The two new polarimetric methods were tested through computer simulations with a circular array made up of two circular subarrays with horizontal and vertical dipoles.

Extensive numerical analysis shows the effectiveness of POL-SLIM and POL-SPICE in accurately estimating the sources DOA, with both small and large number of collected snapshots, attaining the Cramér-Rao bound (CRB) at a lower signal-to-noise ratio value than the single polarization counterparts.

4. Research products:

- Conference papers:
 - M. Boddi, M. Rosamilia, A. Aubry, and A. De Maio, "Iterative Direction-of-Arrival Estimation for a Uniform Circular Array in the Presence of Mutual Coupling," SET-319/RSM Specialist Meeting "New Mathematics for Multi-Dimensional Radar Systems", published, 2023, presented in Edinburgh, 21-23 February 2023.
 - M. Rosamilia, M. Boddi, A. Aubry, and A. De Maio, "Polarimetric Sparse Iterative Procedures for DOA Estimation," 2023 IEEE International Workshop on Technology for Defense and Security, accepted, 2023, to be presented in Rome, 20-22 November 2023.

The paper "Iterative Direction-of-Arrival Estimation for a Uniform Circular Array in the Presence of Mutual Coupling" was awarded as "Best Paper – Young scientist" at the NATO SET-319/RSM Specialist Meeting.

5. Conferences and seminars attended

- 2022 Radar Virtual Distinguished Lecturers Series, attended on line, arranged by IEEE (Institute of Electrical and Electronics Engineers) AESS (Aerospace and Electronic Systems Society), with the following seminars:
 - o "Simulation of Radar Sea Clutter", lecturer Prof. L. Rosenberg, 14/11/2022;
 - "Gravity-Modeling Considerations in High-Integrity Inertial Systems", lecturer Prof. M. Braasch, 30/11/2022;
 - "Radar Technology and Sustainability: How to Conjugate Innovation and Social Duties", lecturer Prof. A. Farina, 05/12/2022;
 - o "Cognitive Radars", lecturer Prof. S. Greco, 14/12/2022;
- 2022 Radar Virtual Distinguished Lecturers Series, attended on line, arranged by IEEE (Institute of Electrical and Electronics Engineers) AESS (Aerospace and Electronic Systems Society), with the following seminars:
 - o "Over a Century of Array Signal Processing", lecturer Prof. J. Li, 01/03/2023;
 - o "Ultra Wide Band Surveillance Radar", lecturer Dr. M. E. Davis, 21/03/2023;
 - "Evolving Cyber Systems in Avionics", lecturer Prof. K. Kramer, 06/04/2023;
 - o "Introduction to MIMO Radar Waveforms", lecturer Dr. H. Sun, 13/04/2023;
 - "Design of Efficient Electrical Power Systems for Small Spacecraft", lecturer J. Gonzalez-Llorente, 20/04/2023;
 - "Iron Stomachs and White Knuckles: Lessons Learned from 60 Years of Flight Testing", lecturer Prof. M. Braasch, 10/05/2023;
 - "Electromagnetics and Meter Wave Radar Scattering Theory", lecturer Prof. H. O. Hellstein, 18/05/2023;
 - o "Cognitive EW: Using AI to Solve EW Problems", lecturer Dr. K. Haigh, 31/05/2023;
 - o "A Day in Space: Analog Astronaut Training", lecturer prof. G. E. Ramirez. 15/06/2023;
 - "Advances in Digital Avionics and Space Systems", lecturer Prof. R. Sabatini, 22/06/2023;
 - "Quantum Algorithms for Aerospace and Electronic Systems: Trends and Applications", lecturer Prof. W. Koch, 28/06/2023;
 - "Delay/Disruption-Tolerant Networking (DTN) for Deep Space Networks", Prof. R. Wang, 06/07/2023;
 - "Design and Simulation of Nanosatellites", lecturer Prof. A. Roman-Gonzalez, 13/07/2023;
 - "INFOrmation and Resource Management (INFORM) for Accurate Tracking of Resident Space Objects", lecturer Prof. P. Singla, 26/07/2023;
 - o "3D ISAR: Techniques and Applications", lecturer Prof. L. Rosenberg, 01/08/2023;
 - "Integrated Sensing and Communications: A Dual-Blind Deconvolution Perspective", lecturer Dr. K Vijay Mishra, 08/08/2023;
 - o "Foliage Penetration Radar", lecturer Dr. M. E. Davis, 15/08/2023;
 - "Advances in Detect and Avoid for Unmanned Aircraft Systems and Advanced Air Mobility", lecturer Prof. G. Fasano, 14/09/2023;
 - "Recent Research on Deep Learning Based Radar Automatic Target Recognition", lecturer U. K. Majumder, 21/09/2023;

- "An Introduction to Quantum Computing and Data Fusion", lecturer Dr. F. Govaers, 28/09/2023;
- "Measurement Extraction for a Point Target From an Optical Sensor", lecturer Prof. Y. Bar-Shalom, 10/10/2023;
- NATO SET-319/RSM Specialist Meeting "New Mathematics for Multi-Dimensional Radar Systems", Edinburgh, 21-23 February 2023, arranged by NATO Science and Technology Oragnization (S&T) and the Isaac Newton Institute Research Programme;
 - Paper presented "Iterative Direction-of-Arrival Estimation for a Uniform Circular Array in the Presence of Mutual Coupling", M. Boddi, M. Rosamilia, A. Aubry, A. De Maio;
- NATO SET-257 RLS Lecture Series "Compressive Sensing Techniques for Radar and ESM Applications", Rome, 15-16 May 2023, organized by the NATO Systems and Electronics Technology (SET) Panel.

6. Periods abroad and/or in international research institutions

None, apart for the participation into conferences and workshops abroad (see para. 5).

7. Tutorship

None.

8. Plan for year three

- Research activities:
 - Investigate the extension of the sparse polarimetric DOA methods to 2D DOA estimation (elevation, azimuth);
 - Investigate the extension of the sparse polarimetric DOA methods to arrays made up of subarrays with elements with different steering vectors (additional structures, not only arrays of crossed dipoles);
 - extend the theoretical framework of subspace fitting models and sparse matrix methodologies to jointly deal with additional multiple dimensions of interest (range, azimuth, elevation, frequency, polarization, etc.);
 - adapt the theoretical models to real-world radar and communication environments, and assess the feasibility and understand limits of a sparse representation of these scenarios;
 - o implement algorithms on SDR platforms and test through on-field measurements.
- Draft topic or title of the thesis:
 - Novel algorithms for the Direction-of-Arrival (DoA) estimation in radar and communication problems.