

Marco Boccarossa

TCAD simulations for semiconductor power devices design and modeling

Tutor: prof. Andrea Irace

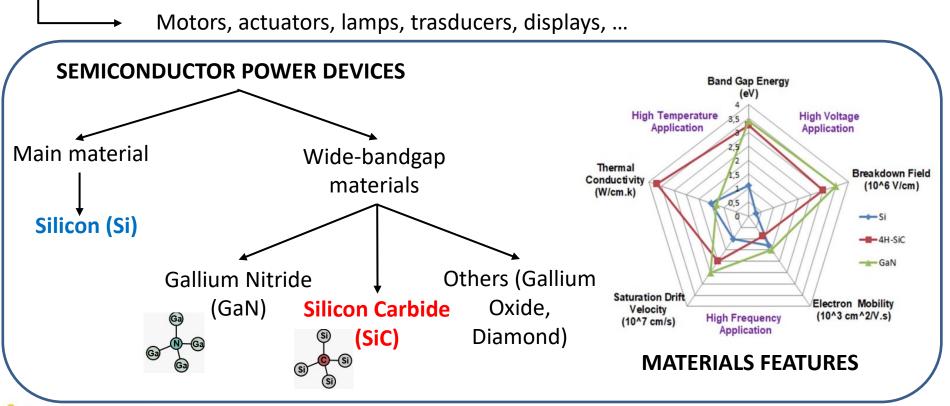
co-Tutor: prof. Luca Maresca

information technology

Year: Second

My background

- **M.Sc.** In Electronic Engineering 26th Oct 2021
- Electrothermal Characterization Laboratory DIETI
- Tutor: prof. Andrea Irace
- Co-Tutor: prof. Luca Maresca
- PhD started 1st Nov 2021 (XXXVII cycle)
- Scholarship funded by **DIETI**
- Partners: Vishay Semiconductor, Università Ca' Foscari Venezia, Hitachi Energy

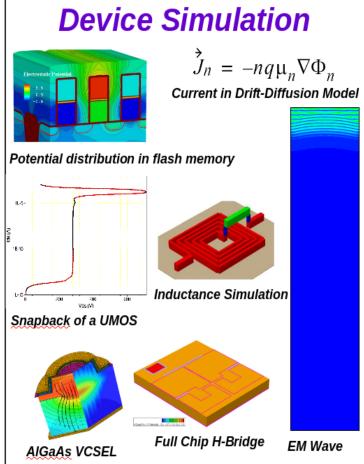


Research field of interest

What is the scope of **Power Electronics**?

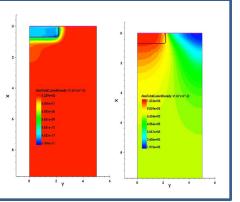
Changing, controlling, conditioning and processing the power coming from the power supply to provide the conditioned one required by the load.

The **loads** can be very different:

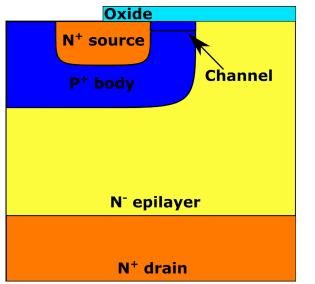

information technolog

Research activity: Overview

- Problem
 - > Losses of power devices
- Objective
 - Improvement of the perfomance and reliability of semiconductor power devices
 - > Adoption of wide-bandgap materials
- Methodology
 - Calibrated TCAD simulations

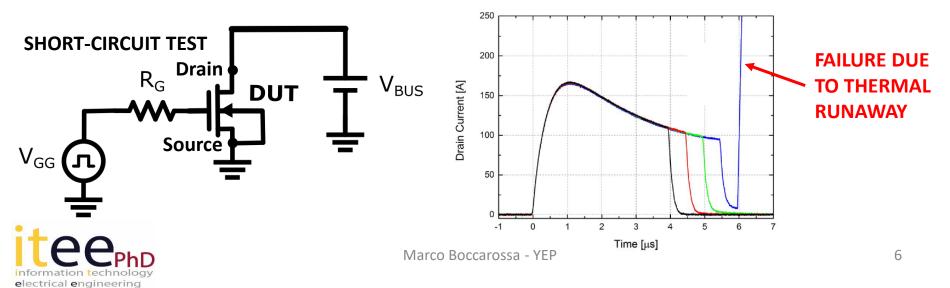


TCAD simulations Technology Computer Aided Design

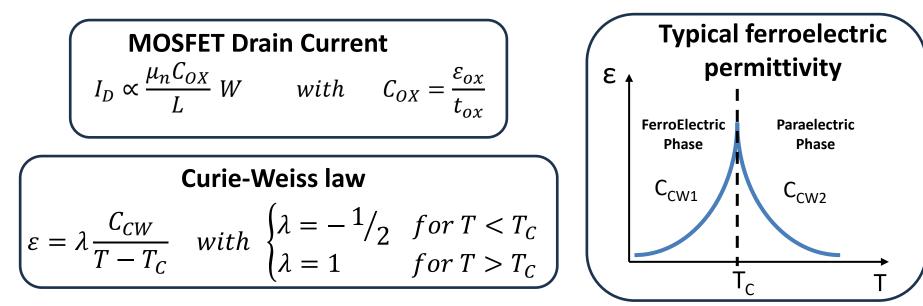


- Predicts the behavior of the device before its physical fabrication
- Reduces development time and costs
- Allows to study the internal phenomena into the device

Current distributions inside the device

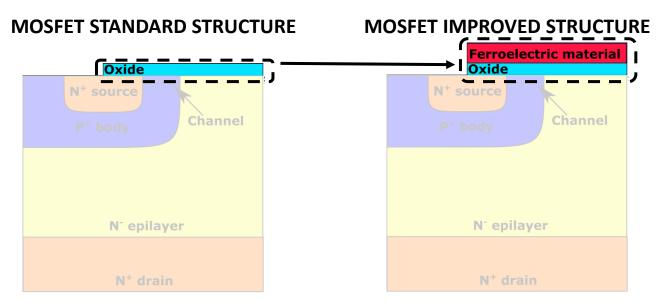


Silicon Carbide MOSFETs



- High breakdown voltage
- High switching speed
- Low on-resistance
- High temperature operation
 Cons:
- Realibility problems → Short-circuit capability

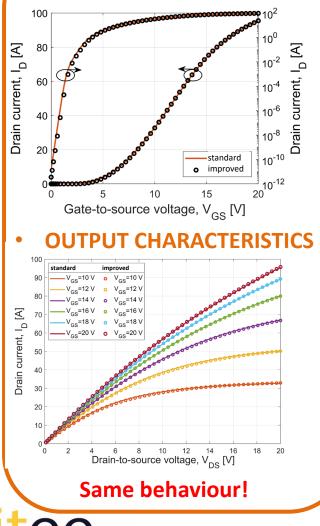
A possible short-circuit event occurs gating on the device with the supply voltage applied between drain and source terminals.



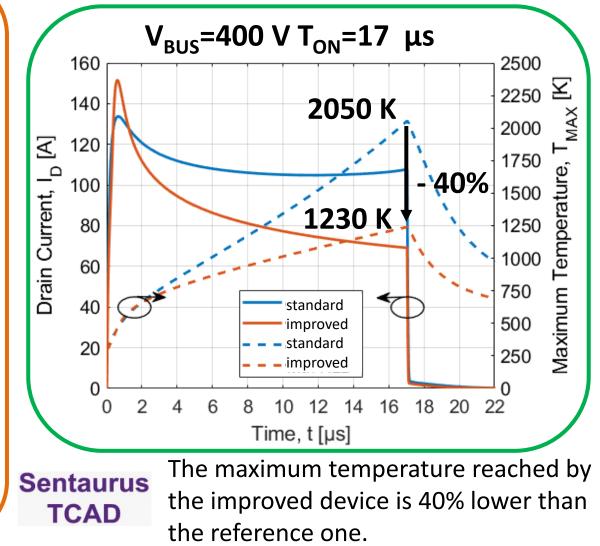
Ferroelectric materials in SiC MOSFETs

Replacing the standard gate oxide with a stack formed by oxide and a ferroelectric material is possible to exploit the temperature dependent permittivity to limit the current increase due to temperature.

electrical engineerin



Marco Boccarossa - YEP


Short-circuit capability

STATIC OPERATION

SHORT-CIRCUIT WAVERFORMS

Marco Boccarossa - YEP

Products (1/2)

[P1]	M. Boccarossa, L. Maresca, A. Borghese, M. Riccio, G. Breglio, A. Irace, and G. A. Salvatore, "Short-Circuit Rugged 1.2 kV SiC MOSFET with a Non-Linear Dielectric Gate Stack," 2023 <i>35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)</i> , Hong Kong, 2023, pp. 354-357, doi: 10.1109/ISPSD57135.2023.10147604.
[P2]	V. d'Alessandro, V. Terracciano, A. Borghese, M. Boccarossa , and A. Irace, "A Simple Electrothermal Compact Model for SiC MPS Diodes Including the Snapback Mechanism," 2023 29th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Budapest, Hungary, 2023. (in press)
[P3]	M. Boccarossa, L. Maresca, A. Borghese, M. Riccio, G. Breglio, A. Irace, and G. A. Salvatore, "Threshold Voltage Temperature Dependence for a 1.2 kV SiC MOSFET with Non-Linear Gate Stack," 2023 <i>International Seminar on Power Semiconductors (ISPS) Proceedings</i> , Czech Technical University in Prague, Czech Republic, 2023. <i>(in press)</i>
[P4]	M. Boccarossa, L. Maresca, A. Borghese, M. Riccio, G. Breglio, A. Irace, and G. A. Salvatore, "Non-Linear Gate Stack Effect on the Short Circuit Performance of a 1.2-kV SiC MOSFET," 2023 <i>20th International Conference in Silicon Carbide and Related Materials (ICSCRM),</i> Sorrento (NA), Italy, 2023. <i>(in press)</i>

Products (2/2)

[P5]	A. Borghese, S. Angora, M. Boccarossa , M. Riccio, L. Maresca, V. R. Marrazzo, G. Breglio and A. Irace, "Analysis of Electrothermal Imbalance of Hard-Switched Parallel SiC MOSFETs Through Infrared Thermography," 2023 <i>20th International Conference in</i> <i>Silicon Carbide and Related Materials (ICSCRM)</i> , Sorrento (NA), Italy, 2023. <i>(in press)</i>
[P6]	L. Maresca, V. Terracciano, A. Borghese, M. Boccarossa , M. Riccio, G. Breglio, A. Mihaila, G. Romano, S. Wirths, L. Knoll, and A. Irace, "SiC GAA MOSFET concept for high power electronics performance evaluation through advanced TCAD simulations," 2023 <i>20th International Conference in Silicon Carbide and Related Materials (ICSCRM),</i> Sorrento (NA), Italy, 2023. <i>(in press)</i>
[P7]	V. Terracciano, A. Borghese, M. Boccarossa , V. d'Alessandro, and A. Irace, "A Geometry- Scalable Physically-Based SPICE Compact Model for SiC MPS Diodes Including the Snapback Mechanism," 2023 <i>20th International Conference in Silicon Carbide and</i> <i>Related Materials (ICSCRM),</i> Sorrento (NA), Italy, 2023. <i>(in press)</i>

Summary of study activities

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	0	1	9	0	10
Bimonth 2	2	4.2	3.8	0	10
Bimonth 3	4	0	6	0	10
Bimonth 4	0	0.4	9.6	0	10
Bimonth 5	0	0	10	0	10
Bimonth 6	5	0	5	0	10
Total	11	5.6	43.4	0	60
Expected for II year	10 - 20	5 - 10	30 - 45	0-1.6	

Conferences:

 35th IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD 2023), SHAW Auditorium, Hong Kong University of Science and Technology (HKUST), Hong Kong, 28 May – 01 June 2023, poster presentation.

16th International Seminar on Power Semiconductors (ISPS 2023), Czech Technical

- SIE 20 SECIETÀ ELETTRONICA 23
- presentation.
 54th annual Meeting of the Società Italiana di Elettronica (SIE 2023), Noto (SR), Italy, 06 08 September 2023, poster presentation.

University in Prague, Czech Republic, 30 August – 01 September 2023, oral

20th International Conference on Silicon Carbide and Related Materials (ICSCRM 2023), Sorrento (NA), Italy, 17 – 22 September 2023, **poster presentation.**

Next Year

- Engineering of the ferroelectric material needed to achieve the better trade off between improved short-circuit performance and current capability during normal operation
- Study on technological problem for the physical realization
- **ABROAD RESEARCH:** six months at the University of Warwick, Coventry, UK, to go deeper in the technological fabrication of semiconductor power devices.

Thank you for your attention!

