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Research area (1/2)
Power Electronics focuses on
the control, conversion, and
management of the power
coming from the power
supply to provide the
conditioned one required by
the load.

A crucial role in power
electronics is played by
semiconductor power
devices, which act essentially
as switch and controllers
within the circuits.
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Research area (2/2)
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• Silicon-based semiconductor 
devices (e.g., MOSFETs, IGBTs) 
have long dominated the field due 
to their low cost and mature 
technology.

• Demanding for higher efficency, 
power density and improved 
thermal perfomance has led to the 
exploration of new materials to 
overcome silicon limitations.
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• Silicon-based semiconductor 
devices (e.g., MOSFETs, IGBTs) 
have long dominated the field due 
to their low cost and mature 
technology.

• Demanding for higher efficency, 
power density and improved 
thermal perfomance has led to the 
exploration of new materials to 
overcome silicon limitations.

• Wide-bandgap (WBG) materials, such as Silicon 
Carbide (SiC) and Gallium Oxide (GaN) have
become increasingly important in power electronics
thanks to their superior properties compared to
silicon, such as as the ability to operate at higher
voltages, temperatures, and frequencies.

• Ideal for applications where efficiency is critical,
such as electric vehicles, renewable energy systems,
and high-frequency power converters.
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Research results
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 SiC diodes
• Active and termination design
• MPS diodes simulations strategy[P1, P2]
• Compact modeling for snapback mechanism [P6, P8]

 SiC Gate-All-Aroung (GAA) MOSFETs
• Performance analysis [P7, P12]

 Semi-superjunction MOSFETs
• Easy fabrication method [P14, P16]

Multidimensional MOSFETs cells 
• Improved perfomance [P13]

 <<Ferro-Power>> MOSFETs [P4, P5, P10, P11, P15] 
• Improved Short-circuit (SC) capability through ferroelectric 

materials
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• Problem 
Short-circuit (SC) weakness of SiC MOSFETs 

• Objective
Improve SC capability of SiC MOSFETs through 
ferroelectric materials

• Methodology
TCAD simulations benchmarked on standard MOSFETs 
perfomance
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TCAD simulations
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Technology Computer Aided Design

Marco Boccarossa - YEP

• Predicts the behavior of the 
device before its physical 
fabrication

• Reduces development time 
and costs

• Allows to study the internal 
phenomena into the device

Current distributions 
inside the device



Silicon Carbide MOSFETs
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Pros:
• High breakdown voltage
• High switching speed
• Low on-resistance
• High temperature operation
Cons:
• Realibility problems  Short-circuit 

capability
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Silicon Carbide MOSFETs
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Pros:
• High breakdown voltage
• High switching speed
• Low on-resistance
• High temperature operation
Cons:
• Realibility problems  Short-circuit 

capability
A possible short-circuit event occurs when the device switches on with 
the supply voltage applied between drain and source terminals.

SHORT-CIRCUIT TEST

Marco Boccarossa - YEP

FAILURE DUE 
TO THERMAL 
RUNAWAY

Drain

Source

Relatore
Note di presentazione
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Standard MOSFET elementary cell

tOX
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Standard MOSFET elementary cell

𝐼𝐼𝐷𝐷 ∝ 𝝁𝝁 𝑻𝑻 𝑪𝑪𝑶𝑶𝑶𝑶 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑽𝑽𝑻𝑻𝑻𝑻 𝑻𝑻 2
MOSFET Drain Current

tOX
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Standard MOSFET elementary cell

𝐼𝐼𝐷𝐷 ∝ 𝝁𝝁 𝑻𝑻 𝑪𝑪𝑶𝑶𝑶𝑶 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑽𝑽𝑻𝑻𝑻𝑻 𝑻𝑻 2
MOSFET Drain Current

Temperature-dependent parameters

tOX
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Standard MOSFET elementary cell

𝐼𝐼𝐷𝐷 ∝ 𝝁𝝁 𝑻𝑻 𝑪𝑪𝑶𝑶𝑶𝑶 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑽𝑽𝑻𝑻𝑻𝑻 𝑻𝑻 2
MOSFET Drain Current

𝐶𝐶𝑂𝑂𝑂𝑂 =
𝜀𝜀𝑜𝑜𝑜𝑜
𝑡𝑡𝑜𝑜𝑜𝑜

Temperature-dependent parameters

Constant with 
temperature

tOX



MOSFET operation

21Marco Boccarossa

Standard MOSFET elementary cell

𝐼𝐼𝐷𝐷 ∝ 𝝁𝝁 𝑻𝑻 𝑪𝑪𝑶𝑶𝑶𝑶 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑽𝑽𝑻𝑻𝑻𝑻 𝑻𝑻 2
MOSFET Drain Current

𝐶𝐶𝑂𝑂𝑂𝑂 =
𝜀𝜀𝑜𝑜𝑜𝑜
𝑡𝑡𝑜𝑜𝑜𝑜

Temperature-dependent parameters

Constant with 
temperature

tOX

• The increasing 
temperature during 
SC events can trigger 
a positive feedback 
with the current, 
potentially leading to 
failure due to 
thermal runaway.



MOSFET operation
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Standard MOSFET elementary cell

𝐼𝐼𝐷𝐷 ∝ 𝝁𝝁 𝑻𝑻 𝑪𝑪𝑶𝑶𝑶𝑶 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑽𝑽𝑻𝑻𝑻𝑻 𝑻𝑻 2
MOSFET Drain Current

𝐶𝐶𝑂𝑂𝑂𝑂 =
𝜀𝜀𝑜𝑜𝑜𝑜
𝑡𝑡𝑜𝑜𝑜𝑜

Temperature-dependent parameters

Constant with 
temperature

tOX

• The increasing 
temperature during SC 
events can trigger a 
positive feedback with 
the current, potentially 
leading to failure due 
to thermal runaway.

• Is there a way to limit 
the current conducted 
during SC? 



Ferroelectric materials
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• Ferroelectric materials are chaterized by a 
spontaneus polarization.

Marco Boccarossa
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• Ferroelectric materials are chaterized by a 
spontaneus polarization.

1) Landau’s theory: 
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Describes the dependence of 
the polarization on electric 
field and temperature

TC

CCW CCW

Paraelectric 
Phase

FerroElectric 
Phase
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• Ferroelectric materials are chaterized by a 
spontaneus polarization.

1) Landau’s theory: 

2) Curie-Weiss law:
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Describes the dependence 
of the dielectric constant on 
temperature

Describes the dependence of 
the polarization on electric 
field and temperature
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• Ferroelectric materials are chaterized by a 
spontaneus polarization.

1) Landau’s theory: 

2) Curie-Weiss law:
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Describes the dependence 
of the dielectric constant on 
temperature

Describes the dependence of 
the polarization on electric 
field and temperature

TC

CCW CCW

Paraelectric 
Phase

FerroElectric 
Phase

ε

T

TC: Curie Temperature
CCW: Curie Constant

P

E



<<Ferro-Power>> MOSFET

27Marco Boccarossa

Standard MOSFET elementary cell

𝐼𝐼𝐷𝐷 ∝ 𝝁𝝁 𝑻𝑻 𝑪𝑪𝑶𝑶𝑶𝑶 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑽𝑽𝑻𝑻𝑻𝑻 𝑻𝑻 2
MOSFET Drain Current

𝐶𝐶𝑂𝑂𝑂𝑂 =
𝜀𝜀𝑜𝑜𝑜𝑜
𝑡𝑡𝑜𝑜𝑜𝑜

Temperature-dependent parameters

Constant with 
temperature

tOX
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Standard MOSFET elementary cell

𝐼𝐼𝐷𝐷 ∝ 𝝁𝝁𝒏𝒏 𝑻𝑻 𝑪𝑪𝑶𝑶𝑶𝑶 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑽𝑽𝑻𝑻𝑻𝑻 𝑻𝑻 2
MOSFET Drain Current

𝐶𝐶𝑂𝑂𝑂𝑂 =
𝜀𝜀𝑜𝑜𝑜𝑜
𝑡𝑡𝑜𝑜𝑜𝑜

Temperature-dependent parameters

Constant with 
temperature

Standard MOSFET elementary cell

tOX
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Standard MOSFET elementary cell

𝐼𝐼𝐷𝐷 ∝ 𝝁𝝁𝒏𝒏 𝑻𝑻 𝑪𝑪𝑶𝑶𝑶𝑶 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑽𝑽𝑻𝑻𝑻𝑻 𝑻𝑻 2
MOSFET Drain Current

𝐶𝐶𝑂𝑂𝑂𝑂 =
𝜀𝜀𝑜𝑜𝑜𝑜
𝑡𝑡𝑜𝑜𝑜𝑜

Temperature-dependent parameters

Constant with 
temperature

Standard MOSFET elementary cell «Ferro-Power» MOSFET elementary cell

tOX tOX

tFE
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Standard MOSFET elementary cell

𝐼𝐼𝐷𝐷 ∝ 𝝁𝝁𝒏𝒏 𝑻𝑻 𝑪𝑪𝑶𝑶𝑶𝑶 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑽𝑽𝑻𝑻𝑻𝑻 𝑻𝑻 2
MOSFET Drain Current

𝐶𝐶𝑂𝑂𝑂𝑂 =
𝜀𝜀𝑜𝑜𝑜𝑜
𝑡𝑡𝑜𝑜𝑜𝑜

Temperature-dependent parameters

Constant with 
temperature

Standard MOSFET elementary cell «Ferro-Power» MOSFET elementary cell

𝐼𝐼𝐷𝐷 ∝ 𝝁𝝁𝒏𝒏 𝑻𝑻 𝑪𝑪𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝑻𝑻) 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑽𝑽𝑻𝑻𝑻𝑻 𝑻𝑻 2

tOX tOX

tFE

Ferro-Power MOSFET Drain Current
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Standard MOSFET elementary cell

𝐼𝐼𝐷𝐷 ∝ 𝝁𝝁𝒏𝒏 𝑻𝑻 𝑪𝑪𝑶𝑶𝑶𝑶 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑽𝑽𝑻𝑻𝑻𝑻 𝑻𝑻 2
MOSFET Drain Current

𝐶𝐶𝑂𝑂𝑂𝑂 =
𝜀𝜀𝑜𝑜𝑜𝑜
𝑡𝑡𝑜𝑜𝑜𝑜

Temperature-dependent parameters

Constant with 
temperature

Standard MOSFET elementary cell «Ferro-Power» MOSFET elementary cell

𝐼𝐼𝐷𝐷 ∝ 𝝁𝝁𝒏𝒏 𝑻𝑻 𝑪𝑪𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝑻𝑻) 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑽𝑽𝑻𝑻𝑻𝑻 𝑻𝑻 2

𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇 =
𝐶𝐶𝐹𝐹𝐹𝐹(𝑇𝑇)𝐶𝐶𝑂𝑂𝑂𝑂
𝐶𝐶𝐹𝐹𝐹𝐹(𝑇𝑇) + 𝐶𝐶𝑂𝑂𝑂𝑂

𝐶𝐶𝐹𝐹𝐹𝐹 𝑇𝑇 = λ
𝐶𝐶𝐶𝐶𝐶𝐶
𝑇𝑇 − 𝑇𝑇𝐶𝐶

�
1
𝑡𝑡𝐹𝐹𝐹𝐹

Temperature 
dependent

tOX tOX

tFE

Ferro-Power MOSFET Drain Current
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Ferroelectric are currently used only in low-power 
electronics
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Ferroelectric are currently used only in low-power 
electronics
• NEUROMORPHIC SYNAPSE
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Ferroelectric are currently used only in low-power 
electronics
• NEUROMORPHIC SYNAPSE

• NON-VOLATILE FE-RAM



Ferroelectrics in litterature

35Marco Boccarossa

Ferroelectric are currently widely used in low-power 
electronics
• NEUROMORPHIC SYNAPSE

• NON-VOLATILE FE-RAM

• NEGATIVE-CAPACITANCE SWITCH



Working Principle
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Automatic calibration routine
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• An automatic calibration that interfaces Sentaurus 
and MATLAB gives the values of tOX and tFE that 
matches the static and dynamic characteristics of 
the reference device.

Marco Boccarossa

tOX

tFE
TC=193 K
CCW=3447 K



Standard operation
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• The Ferro-Power device has the same staticand 
dynamic perfomance of the standard one.

Marco Boccarossa

TRANSFER CHARACTERISTICS OUTPUT CHARACTERISTICS

Standard MOSFET
(dotted lines)

Ferro-Power MOSFET
(solid lines)

tOX=50 nm

tOX=30 nm tFE=120 nm

TURN-OFF WAVEFORMS TURN-ON WAVEFORMS

1.2 kV MOSFET



Short-circuit capability
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• The SC capability is improved without affecting the 
perfomance during normal operation.
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Test conditions:
VDD=800 V
TON=4 μ s
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• The SC capability is improved without affecting the 
perfomance during normal operation.
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-31%

Test conditions:
VDD=800 V
TON=4 μ s
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• The SC capability is improved without affecting the 
perfomance during normal operation.
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-31%

-41%

Test conditions:
VDD=800 V
TON=4 μ s



Short-circuit capability
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• The SC capability is improved without affecting the 
perfomance during normal operation.
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-31%

-41%

-11%

Test conditions:
VDD=800 V
TON=4 μ s
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• Innovative approach to use ferroelectric material 
in power electronics.

• Same perfomance of the standard device during 
normal operation.

• Improved Short-circuit capability.
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Thank you for your attention!
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Modeling of the ferroelectric material
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• As a case study, Hafnium Oxide (HfO2) was chosen 
as ferroelectric material.

Marco Boccarossa

TC=193 K
CCW=3447 K

• Plain HfO2 is widely used as 
high-k dielectric.

• Can be made ferroelectric by 
doping.

• Ferroelectric parameters (TC 
and CCW) can be tuned from 
dopant species, doping 
concentration, fabrication 
process.
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