

Marco Barletta Research directions for container orchestration in Industry 4.0

Tutor: Marcello Cinque Cycle: XXXVII Year: First

My background

- MSc degree in Computer Engineering (October 2021)
- Research group: DESSERT
- PhD start date: 01/11/2022
- Scholarship type: UNINA

Research field of interest

Industry 4.0 is characterized by the **integration** of the information and communication technologies into production systems.

14.0 is all about **flexible manifacturing**, continuous reconfiguration and adaptation to changeable production goals.

The flexiblity is enabled by the **softwarization**, **virtualization**, and **orchestration** of industrial components, along with new computing paradigms (edge/fog cloud).

Research field of interest

Orchestration systems are distributed systems that automatically **manage** the packaged software **lifecycle** over the computing infrastructure.

They provide:

- 1. Automatic placement and deployment
- 2. Monitoring of the state of the cluster
- 3. Migration and re-deploy of the containers

Orchestration systems are designed and used in cloud environments, behaving as Cloud-OSes.

Summary of study activities

Ad hoc PhD courses:

- Virtualization technologies and their applications
- Statistical data analysis for science and engineering research
- Imprenditorialità accademica

Courses borrowed from MSc curricula :

- Quantum Information
- Real-Time Industrial Systems
- **Conferences / events attended:**
- 34th Euromicro Conference on Real-Time Systems (ECRTS 2022) Modena, Italy, 05/07/2022 to 08/07/2022, presenting author

Problem:

Orchestration systems need a complete re-design to meet industrial requirements.

Limitations:

- 1. Containers suffer from reduced **isolation**;
- 2. Unsuitable **abstractions** of nodes and workloads;
- **3. Monitoring** and **failure mitigation** policies designed for best-effort environments;
- 4. Networking and computing resources are managed indipendently;

Objective:

Design and **implement** and **evaluate** an orchestration system that solves listed problems, to be applied in I4.0.

Specifically, there is the need to:

- 1. Enable orchestration for **partitioned** multi-criticality containers;
- 2. Define suitable **placement** strategies, based on new abstractions for criticality-aware deployments to reduce SLA violations;
- 3. Design appropriate **monitoring** and **failure mitigation** policies to guarantee carrier grade availability and sub-second downtimes;
- 4. Design a placement algorithm to **jointly** mange networking and computing resources.

Methodology:

- Measure the behaviour under stress of different hypervisors/OSes useful to implement partitioned containers.
- **2. Derive** the most important **metrics** to quantify the isolation level of a system.
- **3. Design** and implement policies based on these metrics, along with dependability techniques.
- **4. Evaluate** the behaviour of the overall system under stress, measure **downtimes** and achievable **dependability**.

Products

[C1]	"Achieving isolation in mixed-criticality industrial edge systems with real-time containers" "Achieving isolation in mixed-criticality industrial edge systems with real-time containers (Artifact)" M. Barletta, M. Cinque, L. De Simone, R. Della Corte 34th Euromicro Conference on Real-Time Systems (ECRTS 2022)
[C2]	"Introducing k4. 0s: a Model for Mixed-Criticality Container Orchestration in Industry 4.0" M. Barletta, M. Cinque, L. De Simone, R. Della Corte 7th IEEE Cyber Science and Technology Congress (CyberSciTech 2022)
[C3]	"RunPHI: Enabling Mixed-criticality Containers via Partitioning Hypervisors in Industry 4.0" M. Barletta, M. Cinque, L. De Simone, R. Della Corte, G. Farina, D. Ottaviano 33rd IEEE International Symposium on Software Reliability Engineering (ISSRE 2022) – Fast Abstracts
[C4]	"Hierarchical Scheduling for Real-Time Containers in Mixed-Criticality Systems" M. Barletta, M. Cinque, R. Della Corte 32nd IEEE International Symposium on Software Reliability Engineering (ISSRE 2021) – Fast Abstracts

