

Sarah Adamo Implementation of AI solutions for medicine and telemedicine

Tutor: Prof. Mario Cesarelli Cycle: XXXVII Year: Second

My background

- MSc Degree in Biomedical Engineering @ DIETI Federico II
 - Thesis: "Machine Learning to predict rehabilitative outcomes in poststroke patients"
- Ph.D. Fellowship founded by Consortium GARR
 - Starting date: 01/11/2021 (Ended in March 2023)
 - Host Institution: IRCCS Maugeri, Telese Terme (BN)
- Research group:
 - UNINA Bioengineering Research Group;
 - Maugeri Bioengineering Unit.

Research field of interest

Telemedicine and medical remote assistance:

- Patients with chronic disease are more exposed to acute events and require constant monitoring
- Telemedicine can be crucial since patients can be assisted from their own home

An effective way to collect huge amount of data...

...used as input for Machine Learning algorithms

Research activity: Problem

Which are the main parameters able to...

- Predict an acute event?
- Identify different phenotypes?
 Starting from previous results, ML models were:
- assessed and tested on similar cases;
- implemented on new diseases cases.

Research activity: Case study

Prediction of mortality in COVID-19 patients depending on COVID-19 variants (i.e., wild type, alpha, gamma, delta, omicron).

Identification of the main clinical parameters that highly influenced the outcome per each variant; comparison of them among the variants.

Clustering for the identification of different clinical phenotypes of asthmatic patients. Basing on the results, setting of a threshold for the classification (eosinophil count).

 \sim Prediction of future exacerbations of severe and acute asthma events and \sim identification of the most important clinical parameters

Research activity: Methodology

Data acquisition and processing

Feature selection

Validation of results (hold-out, cross-validation)

- Unsupervised ML (clustering, silhouette coefficient);
- Supervised ML (classification, 2 or more classes)

Feature Importance

Application of the results to real approaches

Research activity: Problem 2

A managerial approach to investigate falls risk in a rehabilitation hospital

1. Analyze the fall-related anamnestic and clinical data

2. Distinguish fallers/recurrent fallers and estimate the consequences of falls

Research activity: Methodology

Projec	t title	
A managerial approach to investigate fall risk in a rehabilitation hospital		
Problem Statement Excessive number of falls in a rehabilitation hospital	Objective Statement Introduce clinical measures that can solve and re- duce the presented problem	
Critical to quality	Target	
• Clinical effect and consequential interventions due to falls	Analyze the rehabilitative hospital context in rela- tion to falls and eventually realize corrective	
Fall recurrences	measures	
Timeline		
Define → January 2022 – April 2022		
Measure \rightarrow May 2022 – August 2022		
Analyze \rightarrow September 2022 – December 2022		
In scope	Out of Scope	
• Falls	All the other clinical accidents	
Scientific Clinical Institute Maugeri, Bari, Italy,	All the other structures	
Busines	ss need	
Reducing falls and their impact on Public Health		
	5 The DMAIC Cycle	

Improve

Anal

Research activity: Objective

Supporting clinical decision making

More improvements Less healthcare management costs

Essential Assistance Levels (LEA) in non-urbanized area

Better Quality of Life for <u>all</u> patients

Summary of study activities

- Ad hoc PhD courses:
 - Using Deep Learning Properly
- Research and study on machine learning in medicine and telemedicine (particularly focusing on COVID-19 and Health Management Systems)

Products

[P1]	Cesarelli, G., Petrelli, R., Adamo, S., Monce, O., Ricciardi, C., Cristallo, E., & Cesarelli, M. (2023). <i>A Managerial Approach to Investigate Fall Risk in a Rehabilitation Hospital</i> . Applied Sciences, 13(13), 7847.
[P2]	Amboni, M., Ricciardi, C., Adamo, S., Nicolai, E., Volzone, A., Erro, R., & Barone, P. (2022). <i>Machine learning can predict mild cognitive impairment in Parkinson's disease. Frontiers in Neurology,</i> 13, 1010147.

Thanks for the attention!

