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Privacy-Preserving Machine Learning
• Privacy-Preserving Machine Learning (PPML) aims to prevent

data leakage in machine learning algorithms

• Currently a hot topic in literature
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• Usually achieved via 
anonymization (k-anonymity, l-
diversity, t-closeness), 
perturbation/obfuscation 
(Differential Privacy) or 
cryptographic techniques 
(Homomorphic Encryption, 
Secure Multi-party Computation)



Main Problem: Data Privacy in MLaaS
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• Machine-Learning-as-a-Service (MLaaS) scenarios 
are becoming increasingly more common

• Privacy of user data is at risk
– Server data breach leaks data to malicious entities

– Service owner itself may be “honest-but-curious”

• Potentially sensitive extra information could be 
inferred from the data

• The only allowed data usage must be the one 
requested/expected by the user
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Main Problem: Data Privacy in MLaaS
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Main Objective: Data anonymization

Lossless techniques

• Trusted Execution Environment 
(TEE), Homomorphyc
Encryption (HE), Secure Multi-
party Computation (SMC).

• Data privacy directly granted by 
computational security via 
cryptographic techniques.

• Usually suffer from high 
computational overhead.

Lossy techniques

• K-anonymity, L-diversity, T-
closeness, Differential Privacy 
(DP), task-driven privacy-
preserving anonymization.

• Typically apply an irreversible 
“lossy” transformation to the 
data (with negligible overhead)

• Inevitably present a trade-off 
among privacy, utility and 
scalability
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Data Anonymization: Theory
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Implemented solution
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• Use case: virtually any FC and Conv Network for classification 
tasks (we tested simple MLPs, small ConvNets and deep ResNets)

• Fine tune the deployed model to obtain “private” mid-network 
deep features
– An auxiliary loss function is added to iteratively steer the features in 

the encoding space
– The combined loss depends on the pre-knowledge assumed in the 

scenario: our case is 1 main task, unknown malicious task(s)
– Random noise may be added to the features to perturb them

• Split model to reduce client-side computational burden and/or 
keep client engaged with MLaaS platform

• Provide first half as a closed-box encoder to the client
– A non-invertible, tailored anonymization function

• Use second half (server-side) to carry out the requested task on 
the received anonymized data, and send back the results
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Implemented solution: Training
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Implemented solution: Deployment
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Implemented solution: Qualitative results
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Next year planning
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• Extend the work: test more datasets, data types, 
privacy metrics, and use cases (e.g., finance and 
cybersecurity)

• Improve the center loss: test other distance metrics, 
add perturbative noise to deep features

• Assess generalization: e.g., study how 
legitimate/malicious tasks correlation affects the 
effectiveness of the approach

• Improve applicability: e.g., refactor approach to avoid 
deployed model re-training/fine tuning
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Thanks for listening!
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