

Università degli Studi di Napoli Federico II PhD program in Information Technology and Electrical Engineering

PhD Student: Viviana Morlando

Cycle: XXXV

Training and Research Activities Report

Academic year: 2020-21 - PhD Year: Second

student signature

Tutor: Dr. Ing. Fabio Ruggiero

Fasio Ruggiero tutor signature

Date: October 21, 2021

PhD program in Information Technology and Electrical Engineering

PhD student: Viviana Morlando

Cycle: XXXV

- 1. Information:
 - PhD student: Viviana Morlando
 - > DR number: DR993891
 - Date of birth: 26/06/1996
 - Master Science degree: Automation Engineering di Napoli Federico II

University: Università degli Studi

PhD Cycle: XXXV

- > Scholarship type: DIETI PRIN 2017 "PRINBOT"
- > Tutor: Fabio Ruggiero

2. Study and training activities:

Activity	Type ¹	Hours	Credits	Dates	Organizer	Certificate ²
Robot Manipulation and Control	Seminar	2 h 30 min	0.5	17/11/2020	Prof. Bruno Siciliano	Y
Antonio Picariello Lectures on DataScience, "Digital Project Management: Practices, processes, techniques, tools and scientific Approach"	Seminar	1 h	0.2	18/11/2020	Prof. Flora Amato, Prof. Giuseppe Longo	Y
L'esperienza del progetto di tele- riabilitazione NEUROREAB	Seminar	3 h	0.6	24/11/2020	Ing. D. Furno e Ing. L. Romanelli	Y
Antonio Picariello Lectures on DataScience, "#andràtuttobene: Images, Texts, Emojis & Geo-data in aSentiment Analysis Pipeline"	Seminar	1 h 30 min	0.3	25/11/2020	Prof. Flora Amato, Prof. Giuseppe Longo	Y

PhD program in Information Technology and Electrical Engineering

PhD student: Viviana Morlando

		1	I			
IEEE webinar	Saminan	1	0.2	27/11/2020		V
Patent Searching	Seminar	1	0.2	2//11/2020		Ŷ
best practices with						
IEEE Xplore						
Antonio Picariello					D 4 51	
Lectures on Data	Seminar	1	0.2	02/12/2020	Prof. Flora	Y
Science, "At the					Amato,	
Nexus of Big					Prof.	
Data, Machine					Giuseppe	
Intelligence, and					Longo	
Human Cognition"						
Scientific Colloquia						
at SSM, Network	Seminar	1 h 30	0.3	03/12/2020	Prof.	Ν
Systems, Kuramoto		min			Francesco	
Oscillators, and					Bullo	
Synchronous Power						
Flow						
Antonio Picariello						
Lectures on Data	Seminar	1 h	0.2	09/12/2020	Prof. Flora	Y
Science, "Exploiting					Amato.	_
Deep					Prof.	
Learning and					Giusenne	
Probabilistic					Longo	
Modeling for					Longo	
Rehavior Analytics"						
Antonio Picariello						
Lectures on Data	Seminar	2 h	04	16/12/2020	Prof Flora	V
Science "Data driven	Sciinai	2 11	0.7	10/12/2020	A moto	1
transformation in					Amato, Drof	
WINDTDE through					Tiusanna	
Windike through Managans voice?					Longo	
Study of logged					Longo	
Study of legged	Derreit		(01/11/2020		
manipulators and	Research		0	01/11/2020		
realization of a				-		
framework for				31/12/2020		
nonprehensile						
transportation of an						
object with legged						
robots						
Antonio Picariello				10/01/01	D	
Lectures on	Seminar	1 h	0.2	13/01/2021	Prof. Flora	Y
DataScience, "From					Amato,	
Photometric					Prof.	
Redshifts to					Giuseppe	
Improved Weather					Longo	
Forecasts, an						
interdisciplinary view						
on						

PhD program in Information Technology and Electrical Engineering

PhD student: Viviana Morlando

machine learning"						
Antonio Picariello Lectures on DataScience, "Cybercrime and e- evidence: the criminal justice response"	Seminar	2 h	0.4	20/01/2021	Prof. Flora Amato, Prof. Giuseppe Longo	Y
Antonio Picariello Lectures on Data Science, "AI: Artificial Intelligence for notary's sector - a case study"	Seminar	1 h	0.2	27/01/2021	Prof. Flora Amato, Prof. Giuseppe Longo	Y
"Advances in Machine Learning for Modelling and Understanding in Earth Sciences"	Seminar	1 h	0.2	27/01/2021	Prof. Gustau Camps- Valls	Y
"IFRR Colloquium on Quadruped Robotics", http://ifrr.org/quadru ped-robotics	Seminar	2 h	0.4	04/02/2021	Internation al Foundation of Robotics Research	Ν
Antonio Picariello Lectures on Data Science, "Machine Learning: causality lost in traslation"	Seminar	1 h 30 min	0.3	10/02/2021	Prof. Flora Amato, Prof. Giuseppe Longo	Y
Antonio Picariello Lectures on Data Science, "Approaches to Graph Machine Learning"	Seminar	1 h	0.2	17/02/2021	Prof. Flora Amato, Prof. Giuseppe Longo	Y
Study of legged manipulators and realization of a framework for nonprehensile transportation of an object with legged robots - Preparation of the	Research		8	01/01/2021		

PhD program in Information Technology and Electrical Engineering

PhD student: Viviana Morlando

paper "Whole-body						
Control with						
Disturbance						
Rejection						
through Momentum-						
based Observer for						
Ouadruped Robots "						
submitted to						
"Mechanism and						
Machine Theory"						
Scientific						
Programming and	Courses		3	8/03/2021	Prof	V
Visualization with	Courses		5	0/03/2021-	Aloggio	1
visualization with				10/03/2021	Alessio	
Python Statistic L L 4					Botta	
Statistical data	~				D	
analysis for science	Courses		4	17-19-24-	Prof.	
and engineering				25/02/03-	Roberto	Y
research				04/03/2021	Pietrantuon	
					0	
Antonio Picariello						
Lectures on	Seminar	2 h	0.4	03/03/2021	Prof. Flora	Y
DataScience, "Visual					Amato,	
Interaction and					Prof.	
Communication in					Giusenne	
Data Science"					Longo	
Robo Ludens: A					Longo	
game design	Seminar	1 h	0.2	05/03/2021	Prof Silvia	
tayonomy for human	Semma	1 11	0.2	03/03/2021	Possi	V
taxonomy for numan-					10351	1
Antonia Diserialla						
Antonio Picariello	G •	21	0.4	10/02/2021	р с гі	NZ
Lectures on	Seminar	2 n	0.4	10/03/2021	Prof. Flora	Ŷ
DataScience, "Big					Amato,	
Data and					Prof.	
Computational					Giuseppe	
Linguistics"					Longo	
Artificial Intelligence						
and 5G combined	Seminar	2 h	0.4	27/04/2021	Dr. Pietro	Ν
with holographic					Ferraro,	
technology: a new					Dr.	
perspective for					Pasquale	
remote health					Memmolo	
monitoring						
Revision of the paper				1		
"Whole-body Control	Research		5	01/03/2021		
with Disturbance	_topour on		-	-		
Rejection				30/04/2021		
through Momentum						
hasad Obsamuan fan						
based Observer for						

PhD program in Information Technology and Electrical Engineering

PhD student: Viviana Morlando

Quadruped Robots" submitted to "Mechanism and Machine Theory" -						
Work on the realization and the simulation of a framework for nonprehensile transportation with						
legged robots						
Underwater Robotics	Seminar	2 h	0.4	18/05/2021	Dr. Fabio Ruggiero	N
Introduction to legged robots and examples of IIT's Dynamic Legged Systems Lab	Seminar	2 h	0.4	26/05/2021	Dr. Fabio Ruggiero	Ν
Revision of the paper "Whole-body Control with Disturbance Rejection	Research		8	01/05/2021 - 30/06/2021		
through Momentum- based Observer for Quadruped Robots"						
published in "Mechanism and Machine Theory" -						
Realization and simulations of a framework for						
transportation with a quadruped robot for the paper						
"Nonprehensile Transportation of an object						
with a legged manipulator" to submit						
SIDKA 2021 PhD Summer School – "Game Theory and Network	Doctoral School	30 h	4	12/07/2021 - 17/07/2021	Prof. Claudio Melchiorri	Y

PhD program in Information Technology and Electrical Engineering

PhD student: Viviana Morlando

Cycle: XXXV

Systems" and "Modeling and Control of Soft Robots" - Bertinoro University Residential Centre – July 12-17 2021 Preparation of the paper "Nonprehensile Transportation of an object with a legged manipulator" to submit to RAL. Preparation of the paper "Disturbance rejection for legged	Research	7	01/07/2021 - 31/08/2021	- Prof. Maria Elena Valcher	
rejection for legged					
hybrid absorver" to					
submit to ICRA					
conference					
Prenaration of the					
paper					
"Nonprehensile	Research	10	01/09/2021		
Transportation of an			-		
object with a			31/10/2021		
legged manipulator"					
submitted to KAL.					
naner "Disturbance					
rejection for legged					
robots through a					
hybrid observer"					
submitted to ICRA					
conference.					
Study on the dynamic and control of a guide dog robot.					

1) Courses, Seminar, Doctoral School, Research, Tutorship

2) Choose: Y or N

2.1. Study and training activities - credits earned

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	0	2.9	6	0	8.9
Bimonth 2	0	1.9	8	0	9.9
Bimonth 3	7	1.4	5	0	13.4

PhD program in Information Technology and Electrical Engineering

PhD student: Viviana Morlando

Cycle: XXXV

Bimonth 4	0	0.8	8	0	8.8
Bimonth 5	4	0	7	0	11
Bimonth 6	0	0	10	0	10
Total	11	7	44	0	62
Expected	30 - 70	10 - 30	80 - 140	0-4.8	

3. Research activity:

My scholarship is associated with the project PRIN 2017 "PRINBOT - Grapevine Recognition and Winter Pruning Automation Based on Innovative Robots (20172HHNK5_002)", which aims to develop innovative robotic technologies for grapevine winter pruning automation. My research activity focuses on controlling legged robotic systems, creating a control architecture for a legged locomotion platform endowed with a robotic arm, walking on different terrain, and performing manipulation tasks

For this reason, during this 2nd year, my research can be divided into two activities.

1st activity : Robust locomotion on irregular terrains

One of the main objectives of service robotics is developing autonomous systems able to move in unstructured environments. Regarding autonomous locomotion, significant differences exist between wheeled systems and legged ones. While wheeled robots can move at high speeds, useful to cover an ample space in a short time, they encounter severe difficulties in traversing uneven terrain and environments designed for human use, like steps and stairs. These problems can be solved using legged robots, which can walk through challenging terrain, adapt their foothold to its irregularities, and overcome obstacles lifting the leg.

The problem addressed by the project associated with this Ph.D. research focuses on quadruped robots since they have higher stability than biped robots. At the same time, their legs are more manageable to coordinate than robots with six or more legs. Different control solutions have been proposed over the years to achieve dynamic locomotion for a quadruped robot. The best approach is considering the entire dynamic of the robot using a whole-body control or a model predictive control (MPC). While the first one allows the decoupling of the motion planning from the controller [1-3], the last one can stabilize the robot by predicting the movements over a finite horizon [4,5], despite the difficulty of the nonlinearity of the legged robot dynamics. In both cases, online re-planning is possible, which contributes to coping with the roughness of the terrain and all the external disturbances. Since this kind of robot has started to be used for inspection or patrolling in unstructured environments full of obstacles, the robot needs to retain its balance and adapt its foothold to the roughness of the terrain and reject external disturbances. In some cases, these disturbances are considered with the use of an observer. However, the literature reports observers that only consider the disturbances applied directly either on the center of mass or on the support legs [3,6], without considering a more comprehensive range of disturbances present in more complex situations.

PhD program in Information Technology and Electrical Engineering

PhD student: Viviana Morlando

Cycle: XXXV

During the first Ph.D. year, the research was focused on the development of a whole-body controller based on the decoupling of the centroidal's dynamics (the dynamics of the center of mass) from the legs' ones, composed of a quadratic problem (QP) that modules the ground reaction forces to retain balance during the locomotion. As a solution to the problem of the external disturbance, the realization of a momentum-based observer has been faced. Different from other observers, this one, inspired by [7], also considers the disturbances acting on legs that are still swinging. In this way, the robot can work under challenging conditions such as in difficult atmosphere situations or in narrow spaces where it is easy to have a collision between a leg that is still moving and the environment. The observer's estimation has been combined with the whole-body controller to be tested in the "Gazebo simulator", where the platform used is DogBot, provided by React Robotics (https://reactrobotics.com).

However, this observer deploys the leg's dynamics, neglecting the centroidal's ones. This approximation might be crucial whenever the robot is stressed by major forces acting directly on the CoM. For this reason, during this 2nd year of Ph.D., following this path, a new hybrid observer dealing with disturbances acting both on the CoM and on the legs is presented.

The estimation of the external wrench acting on the CoM has found wide applications [6], [8]. In most cases, a momentum-based observer is employed, requiring the CoM's translational velocity knowledge. Usually, such a velocity is indirectly obtained through a transformation presented in [9] and not directly from a sensor. An inertial measurement unit (IMU) is typically mounted on moving robots such as legged, aerial, or wheeled robots. This sensor provides the floating base's angular velocity and translational acceleration, leaving the translational velocity to a numerical estimation. For a legged robot, using the centroidal's dynamics, there is the need first to compute the floating base's translational velocity and then transform it into the CoM's translational velocity.

These computations, alongside the approximation made to obtain the centroidal's dynamics, can bring significant mistakes in estimating the external wrench. For this reason, differently from the literature, the proposed hybrid estimator comprises three different components:

- 1. The first one deals with the CoM's translational part.
- 2. The second component copes with the CoM's angular part.
- 3. The third one regards the legs.

This last exploits what was realized during the 1st year, presented in [10], dealing with disturbances applied to both swing and stance legs. The first and second components are instead designed to adopt a hybrid observer. Such a hybrid observer comprises a momentum-based observer for CoM's angular term and an acceleration-based observer for the CoM's translational one, employing directly measurable values from the IMU. Therefore, here, with hybrid, it is intended to combine of two different kinds of observers, the momentum-based and the acceleration-based. Tracking of the desired CoM's trajectory is preserved as the rejection of a foot's drift. The resulting control architecture is thus different from existing approaches, which can guarantee either the CoM's tracking or the drift's rejection only. The devised hybrid observer is integrated into a whole-body controller, consisting of a suitable motion planner decoupled from the optimization problem. As in the previous case, the observer was tested in the "Gazebo simulator", where the platform used is DogBot, provided by React Robotics.

PhD program in Information Technology and Electrical Engineering

2nd activity: Nonprehensile transportation with a legged manipulator

Service robots are developed to assist human beings in performing typically dull, dangerous, or repetitive tasks, including household chores. The robot must navigate in a usually broad but cluttered environment and solve other complex tasks such as grasping, manipulating, and transporting objects. For this reason, the research in service robotics has been directed, over the years, towards mobile manipulators, able to both traverse large spaces and execute manipulation tasks. Most mobile robots developed in the last years are wheeled robots endowed with one or two manipulator arms, usually designed to support older people in their daily lives by providing independent living support and remote assistance. These robots can execute complex manipulation tasks such as opening a door or picking items from shelves [11].

However, wheeled robots often encounter difficulties in unstructured environments with non-flat grounds limiting their application range. Instead, legged robots can overcome these obstacles by effectively sensing and adapting their steps to the ground.

Nevertheless, although their performance can vastly exceed those of wheeled robots in unstructured and challenging environments, legged robots still need to find their space in the service fields of household or hospitality. To widen their spectrum of applications, the recent trend is to endow multi-legged robots with arms that make them capable of grasping and manipulating objects [12] enabling interaction-based tasks such as opening a hinged door [13].

Despite their unique and handy features, current legged robots have never been shown before capable of nonprehensile manipulation tasks. Nonprehensile manipulation can be reasonably considered the most complex manipulation task [14]. In a nonprehensile manipulation task, it is neither possible to prevent infinitesimal motions of the object nor to resist all external wrenches applied to it. The capability of performing a nonprehensile manipulation, in principle, would enable legged robots to achieve a broader range of dexterous manipulation tasks, the simplest one being object transportation.

Regarding this aspect, the research of the second year of this Ph.D. has been focused on developing an optimization-based whole-body control architecture for a legged robot transporting an object on a tray in a nonprehensile configuration. The proposed controller takes into account both nonprehensile manipulation and locomotion constraints in a unified and principled way. The faced problem regarded the transportation of an object from an initial to a goal pose without firmly grasping it using a legged robot endowed with a manipulator arm. Locomotion and manipulation tasks present similar non-sliding constraints that need to be satisfied to transport the object safely. Carrying a payload modifies the dynamics of the robot, which, in turn, must not only counteract but also regulate its motion to satisfy these ground and object non-sliding constraints jointly.

The realized controller has been tested in the "Gazebo simulator", where the platform used is DogBot, provided by React Robotics, suitably modified, endowing it with an arm.

PhD program in Information Technology and Electrical Engineering

[1] C. D. Bellicoso, F. Jenelten, P. Fankhauser, C. Gehring, J. Hwangbo, and M. Hutter, "Dynamic locomotion and whole-body control for quadrupedal robots," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 3359–3365.

[2] C. D. Bellicoso, F. Jenelten, C. Gehring, and M. Hutter, "Dynamic locomotion through online nonlinear motion optimization for quadrupedal robots," IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2261–2268, 2018.

[3] S. Fahmi, C. Mastalli, M. Focchi, and C. Semini, "Passive whole-body control for quadruped robots: Experimental validation over challenging terrain," IEEE Robotics

[4] G. Bledt, P. M. Wensing, and S. Kim, "Policy-regularized model predictive control to stabilize diverse quadrupedal gaits for the mit cheetah," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 4102–4109.

[5] M. Neunert, M. Stauble, M. Giftthaler, C. D. Bellicoso, J. Carius, C. Gehring, M. Hutter, and J. Buchli, "Whole-body nonlinear model predictive control through contacts for quadrupeds," IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1458–1465, 2018.

[6] M. Focchi, R. Orsolino, M. Camurri, V. Barasuol, C. Mastalli, D. G. Caldwell, and C. Semini, "Heuristic planning for rough terrain locomotion in presence of external disturbances and variable perception quality," in Advances in Robotics Research: From Lab to Market. Springer, 2020, pp. 165–209.

[7] F. Ruggiero, J. Cacace, H. Sadeghian, and V. Lippiello, "Passivity-based control of vtol uavs with a momentum-based estimator of external wrench and unmodeled dynamics," Robotics and Autonomous Systems, vol. 72, pp. 139–151, 2015.

[8] J. Englsberger, G. Mesesan, and C. Ott, "Smooth trajectory generationand push-recovery based on divergent component of motion," in2017IEEE/RSJ International Conference on Intelligent Robots and Systems,2017, pp. 4560–4567.

[9] C. Ott, M. A. Roa, and G. Hirzinger, "Posture and balance controlfor biped robots based on contact force optimization," in2011 11thIEEE-RAS International Conference on Humanoid Robots.IEEE,2011, pp. 26–33.

[10] V. Morlando, A. Teimoorzadeh, and F. Ruggiero, "Whole-body control with disturbance rejection through a momentum-based observer for quadruped robots," Mech. Mach. Theory, vol. 164, p. 104412, 2021.

[11] S. Chitta, B. Cohen, and M. Likhachev, "Planning for autonomous door opening with a mobile manipulator," in Proc. IEEE Int. Conf. Rob. Autom., 2010, pp. 1799–1806.

[12] C. D. Bellicoso, K. Kramer, M. St'auble, D. Sako, F. Jenelten, M. Bjelonic, and M. Hutter, "Alma-articulated locomotion and manipulation for a torque-controllable robot," in Proc. IEEE Int. Conf. Robot. Autom., 2019, pp. 8477–8483.

[13] P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter, "A unified mpc framework for whole-body dynamic locomotion and manipulation," IEEE Robot. Autom. Lett., vol. 6, no. 3, pp. 4688–4695, 2021.

UniNA ITEE PhD Program

PhD program in Information Technology and Electrical Engineering

PhD student: Viviana Morlando

[14] F. Ruggiero, V. Lippiello, and B. Siciliano, "Nonprehensile dynamic manipulation: A survey," IEEE Robot. Autom. Lett., vol. 3, no. 3, pp.1711–1718, July 2018.

4. Research products

V. Morlando, A. Teimoorzadeh, F. Ruggiero, "Whole-body control with disturbance rejection through a momentum-based observer for quadruped robots", published in Mechanism and Machine Theory 164, 2021, DOI: 10.1016/j.mechmachtheory.2021.104412.

V. Morlando, M. Selvaggio, F. Ruggiero, "Nonprehensile Object Transportation with a Legged Manipulator", submitted to Robotics and Automation Letters (IEEE RAL), 2022

V. Morlando, F. Ruggiero, "Disturbance rejection for legged robots through a hybrid observer", submitted to IEEE International Conference on Robotics and Automation 2022 (ICRA 2022)

5. Conferences and seminars attended

6. Periods abroad and/or in international research institutions

7. Tutorship

Tutorship for Carmela Mariniello's B.Sc. thesis in Automation Engineering. Tutorship for Salvatore Punzo's M.Sc. thesis in Automation Engineering.

8. Plan for year three

- 1. Long-term visit at the Dynamic Legged Systems Lab, Italian Institute of Technology, Genova (15/11/2021-31/01/2022): working on the implementation and testing of a disturbance observer for a quadruped robot endowed with an arm.
- 2. Planning a research period abroad : ETH Zurich, Robotic Systems Lab headed by Marco Hutter (February 2022 July 2022).
- 3. Draft topic of the thesis: Robust control for the locomanipulation of a quadruped robot endowed with an arm
- 4. Further research topic: modelling and control of a guide dog quadruped robot.