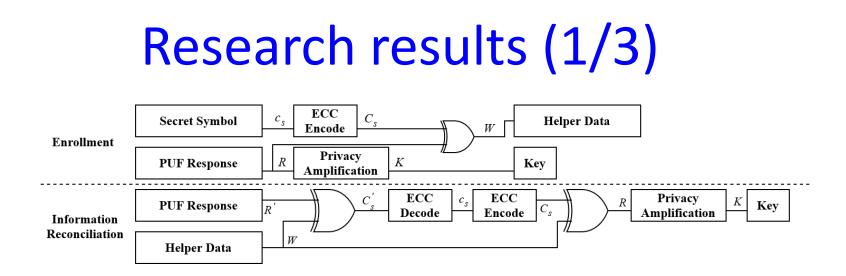


Erasmo La Montagna A PUF based authentication methodology for IIoT embedded safety critical systems Tutor: Nicola Mazzocca Cycle: XXXV Year: 3rd

Background information

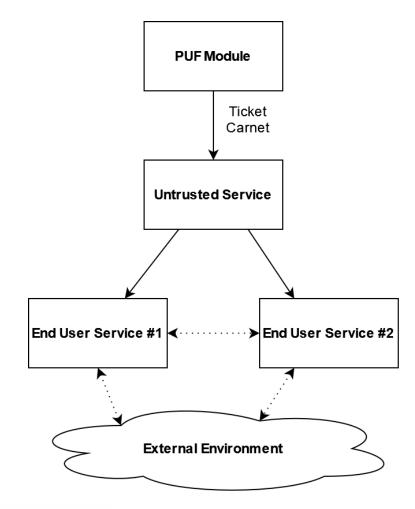
- MSc degree: Computer Engineering taken on 31 January 2019
- Research group: Seclab
- PhD started on 1 November 2019
- No Scholarship
- Currently working for Rete Ferroviaria Italiana (no company funded scholarship)

Summary of study activities

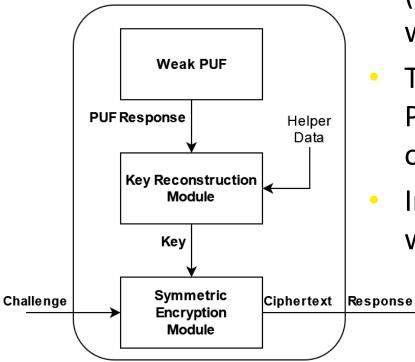

- Conference attended (fully online):
 - 14th International Conference on the Quality of Information and Communications Technology (QUATIC 2021)
- Main focus on several fields of application of Physical Unclonable Functions
 - Physical Fingerprint and key generation (Fuzzy Extractor Algorithm)
 - Pseudo PUF: obtaining a strong PUF from a weak PUF
 - Real case scenario: authenticating nodes in a Power Delivery Network
 - Adopting a PUF as Root of Trust for the Virtual Machines running on a hypervisor
 - Secure boot
 - Use of virtualization on embedded devices
- Ad hoc PhD courses / schools:
 - Safety Critical Systems for Railway Traffic Management
 - Scientific Programming and Visualization with Python
 - Machine learning
 - Virtual Technologies and their Applications
 - Innovation Management, entrepreneurship and intellectual property
 - Real-Time Embedded Systems for I4.0 and IIoT (Not Validated)
- Courses attended borrowed from MSc curricula:
 - Big Data Analytics and Business Intelligence
 - Data Management (6 CFU)
- Seminars

Research areas

- Hardware Security in modern Industrial Internet of Things systems
 - Challenges
 - Neglected Security Requirements
 - Limited Resources of embedded device
 - Chain of trust:
 - Secure Key Generation
 - Code Integrity Check
 - Mutual Authentication
 - Available technologies
 - Physical Unclonable Functions
 - Lightweight Encryption
 - Secure Crypto-processors (i.e. ARM TrustZone)
- Virtualization for safety critical embedded devices
 - Mixed criticality for safety critical systems



- A secure bootloader that extracts PUF responses from SRAM cells
- A PUF implementation that can be obtained also in a restrincted computing environment (small microcontrollers)
- Validates privileged code signed with the physical memory footprint of the device


Research results (2/3)

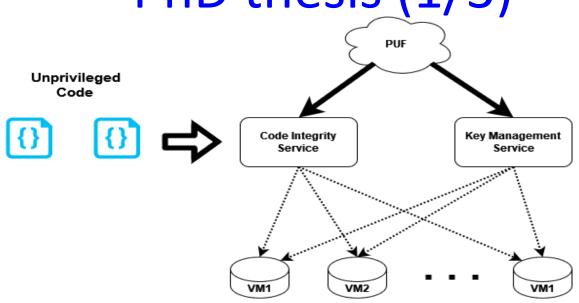
- Extended Phemap: a decentralized mutual authentication protocol
- A centralized trusted authentication service can delegate untrusted components that provides specific services
- A list of encrypted PUF responses is installed into the untrust services
- End Users benefits from several services based on virtual PUF responses

Research results (3/3)

- Design of a PUF-based architecture (Pseudo-PUF), obtained by combining a weak PUF and an encryption module
 - The pseudo PUF behaves like a strong PUF while significantly reducing the overall footprint and cost
 - Implements advanced security primitives with lower costs and resource demand

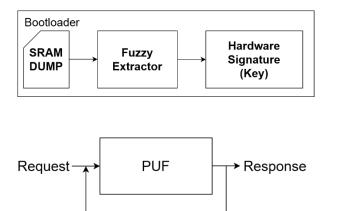
Research products

[P1]	M. Barbareschi, A. De Benedictis, E. La Montagna, A. Mazzeo, N. Mazzocca
	A PUF-based mutual authentication scheme for cloud-edges IoT systems
	Future Generation Computer Systems
	vol. 1439, pp. 246-261, 2019, DOI: 10.1016/ j.future.2019.06.012.
[P2]	M. Barbareschi, A. De Benedictis, E. La Montagna, A. Mazzeo, N. Mazzocca
	PUF-Enabled Authentication-as-a-Service in Fog-IoT Systems
	International Conference on Enabling Technologies: Infrastructure for Collaborative
	Enterprises
	Naples, Italy, Jun. 2019, pp. 58-63, Publisher, DOI: 10.1109/WETICE.2019.00020
[P3]	M. Barbareschi, S. Barone, A. Fezza, E. La Montagna
	Enforcing Mutual Authentication and Confidentiality in Wireless Sensor Networks Using
	Physically Unclonable Functions: A Case Study
	International Conference on the Quality of Information and Communications Technology
	Faro, Portugal, Sep. 2021, pp. 297-310, Publisher, DOI: 10.1007/978-3-030-85347-1_22
[P4]	M. Barbareschi, V. Casola, A. De Benedictis, E. La Montagna, N. Mazzocca,
	On the Adoption of Physically Unclonable Functions to Secure IIoT Devices
	IEEE Transactions on Industrial Informatics
	vol. 17 (11), pp. 7781-7790, 2021, DOI: 10.1109/TII.2021.3059656.



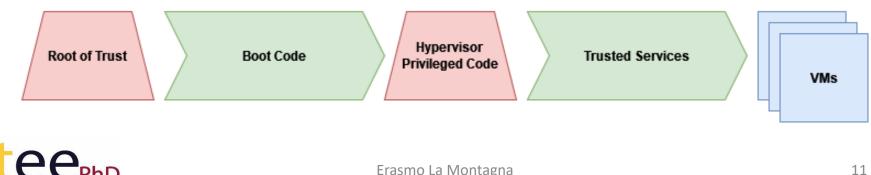
PhD thesis overview

- IIoT systems involved in safety critical tasks must be subjected to Verification and Validation procedures before their deployment.
 - Use of virtualization can significantly reduce costs of certification
- IIoT networks relies on resource constrained devices which are exposed to physical manipulation.
 - These device are usually not equipped with a TPM
- Objective
 - Provide a Root of Trust based on PUFs that is suitable even for edge devices deployed in a safety critical system
- Methodology
 - Analysis of SRAM responses in terms of quality metrics (uniqueness, entropy, bit aliasing)
 - Designing of a low effort PUF module for COTS embedded devices
 - Provision of trusted services that rely on PUFs (i.e. code integrity check, key distribution and management) available to the VMs running on a hypervisor
 - Validation of performances and resilience against known attacks


PhD thesis (1/3)

- A mixed criticality system architecture based on a hypervisor
- A PUF module provides root of trust for the entire system
- A safe boot loader extracts the hardware signature and authenticates the privileged code
- A mutual authentication protocol (Extended PHEMAP) generates authentication keys derived from PUF responses (key distribution and management) and delegate the authentication service

PhD thesis (2/3)



 R_3 R_N R₁ R_2

electrical engineerir

- The secure bootloader extracts the key from the SRAM response at power up
 - The key authenticates the hypervisor executable
- The PUF module, designed with the Pseudo • PUF scheme, returns a unique response to a given request
 - A privileged virtual machine manages the PUF module to construct authentication chains and issues authentication tickets for task specific services

Chain of Trust

PhD thesis (3/3)

• Pros:

- A PUF circuite provides an unclonable hardware signature of the device. A similar approach relies on asymmetric encription and Endorsement keys
- PUFs provide tamper evidence in case of manipulation
- There is no need for asymmetric encryption nor key storage
- Cons:
 - PUF suffer from alteration provoked by extreme temperature
- The complexity of the PUF module is scalable:
 - Even a weak PUF (i.e., SRAM PUF one of the most available), can be enforced by mean of a symmetric cipher (Pseudo PUF) and behave like a strong PUF
 - There is no need for a custom architecture (i.e., FPGA, dedicated SoCs), just COTS microcontrollers
- Edge devices are mainly designed to operate industrial processes safely and reliably, but are not created with security in mind,
 - Neglected authentication, authorization and encryption requirements

