

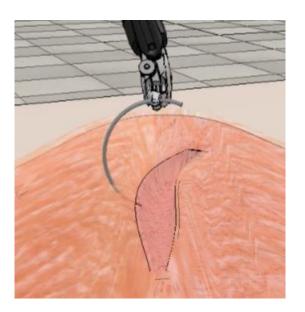
Cristina lacono Automation of robot-assisted surgical procedures

Tutor: Fanny Ficuciello

Cycle: XXXV Year: 2nd

My background

- MSc degree: Automation Engineering at Università degli Studi di Napoli Federico II
- Research group/laboratory:
 - PRISMA LAB
 - ICAROS
- PhD start date: 1st November 2019
- Scholarship type: Unina



Research field of interest

Research topic: Automation of robot-assisted surgical procedures

Figura 1 - dVRK presente nel laboratorio ICAROS

Summary of study activities

PhD courses:

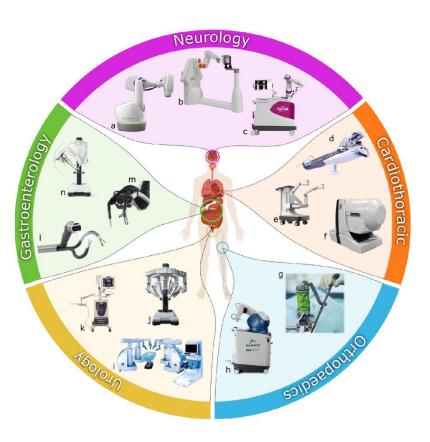
- Statistical data analysis for science and engineering research
- Mathematics and Statistics for Life Sciences
- Strategic Orientation for STEM Research and Writing

PhD Schools: SIDRA 2021

- Game Theory and Network Systems
- Soft Robots

Attended

- Italian Institute of Robotics and Intelligent Machines (I-RIM) 3D 2020
- Italian Institute of Robotics and Intelligent Machines (I-RIM) 3D 2021



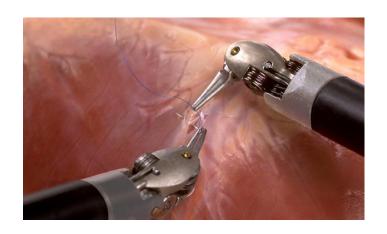
Research activity: Overview

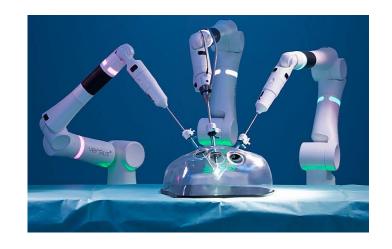
Problem:

Surgical robotics still strongly depends on surgeon's abilities

Limitations:

- limited vision on the surgical site
- surgical procedures are comprised of a series of kinematically complex and repetitive tasks


Research activity: Overview


Objective:

Automation of surgical tasks in order to reduce surgeon errors, duration of procedures, trauma, and expense.

Two principal aspects necessary for the automation of surgical robotassisted procedures:

- Vision perception for robotics systems
- Force feedback during robotic procedures

Localization of the biliary tract in laparoscopic images

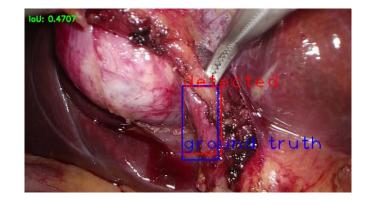
Laparoscopic Cholecystectomy

- Advantages: faster recovery and better cosmetic results,
- Disadvantages: higher risk of bile duct injury

- Imaging method to enhance intraoperative visualization of the bile duct
- Disadvantage: it makes it challenging to see
 all the other anatomical structures

Aim

 help the surgeon to better visualize the biliary tract without the use of ICG

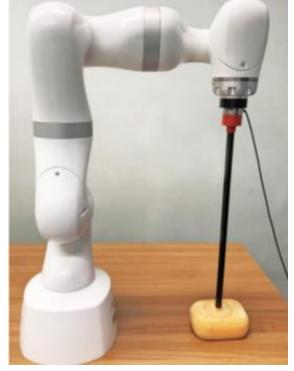

Localization of the biliary tract in laparoscopic images

Proposed Solution

- Deep learning-based algorithm for localization of the biliary tract from whitelight images
- Construction and annotation of an image database to train the deep learning algorithm.

•	The method uses You Only Look Once
	(YOLO) on laparoscopic images to
	localize the biliary duct.

	Total Frames	Training	Test
Patient 1	142	15	15
Patient 2	171	34	14
Patient 3	219	-	39
Patient 4	152	74	20
Patient 5	48	5	5
Patient 6	144	-	29
Patient 7	168	14	10
Patient 8	89	18	10
Patient 9	153	14	10
Patient 10	73	20	10
Patient 11	27	14	10
Patient 12	135	-	19

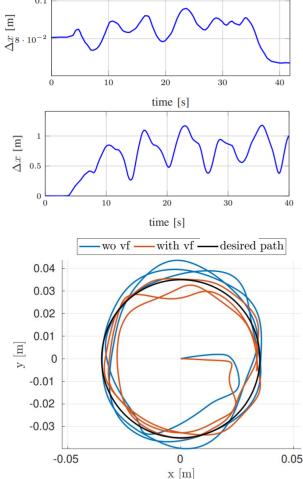


Control framework for humanrobot interaction in medical robotic applications

- Several medical robotics applications require and RCM constraint:
 - passive (mechanically)
 - active (software)
- Reduced workspace to avoid touching dangerous areas

Control framework for humanrobot interaction in medical robotics applications

Proposed solution:

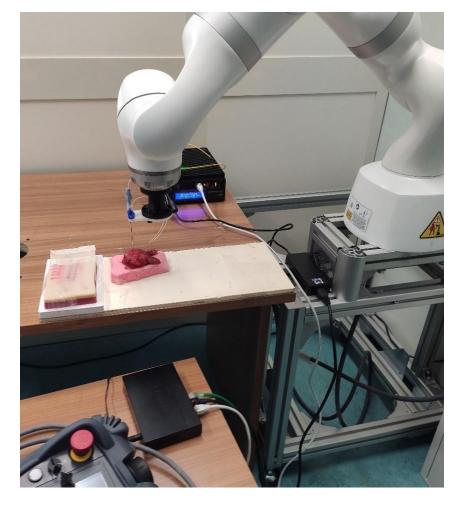

RCM constraint

$$\begin{split} \dot{\mathbf{p}}_{RCM} &= \mathbf{J}_{RCM}(\mathbf{q}, \lambda) \begin{bmatrix} \dot{\mathbf{q}} \\ \dot{\lambda} \end{bmatrix} \\ \dot{\mathbf{t}}_{EXT} &= \begin{bmatrix} \dot{\mathbf{t}} \\ \mathbf{0}_{3\times 1} \end{bmatrix} = \begin{bmatrix} \mathbf{J}_{t} & \mathbf{0}_{n_{t}\times 1} \\ \mathbf{J}_{RCM} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{q}} \\ \dot{\lambda} \end{bmatrix} = \mathbf{J}_{EXT} \begin{bmatrix} \dot{\mathbf{q}} \\ \dot{\lambda} \end{bmatrix} \end{split}$$

Manual guidance and Virtual Fixtures

$$\mathbf{f}_{VF} = \mathbf{K}_{VF}\mathbf{d} + \mathbf{D}_{VF}\dot{\mathbf{d}}$$

$$\mathbf{M}\ddot{\mathbf{p}} + \mathbf{D}\dot{\mathbf{p}} + \mathbf{K}\mathbf{p} = \mathbf{f} - \mathbf{f}_{VF}$$

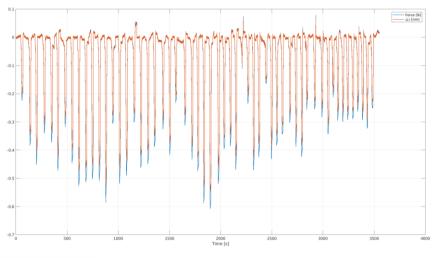

Ex vivo testing of a miniaturized probe for prostate tissue characterization

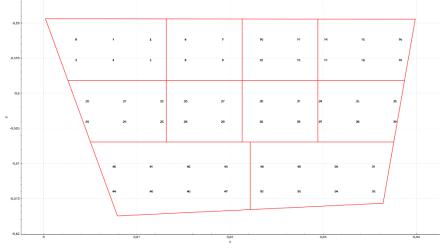
Problem

 Characterizeation of mechanical properties of insane and healthy prostate tissues

Aim

 Testing on phantom tissues and ex-vivo tissues a miniaturized probe based on optical fiber sensor technology

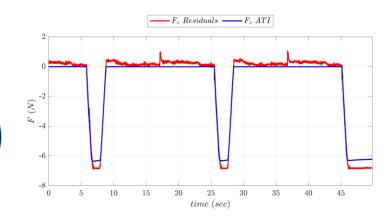



Ex vivo testing of a miniaturized probe for prostate tissue characterization

Results

Creation of a dataset of elasticity measurements of prostate

DVRK Dynamic Model Identification for sensor-less


force estimation

- Problem: need for accurate movements in safety-critical site
- Solution: autonomous tasks using Da Vinci robot

Method:

- dVRK dynamic model definition
- Sensor-less contact force estimation

$$egin{aligned} oldsymbol{r} &= oldsymbol{K_I} igg(oldsymbol{p} - \int_0^t ig(oldsymbol{ au} + oldsymbol{C}^T(oldsymbol{q}, \dot{oldsymbol{q}}) \dot{oldsymbol{q}} - oldsymbol{g}(oldsymbol{q}) + oldsymbol{r}) \, ds igg) \ \hat{oldsymbol{F_c}} &= ig(oldsymbol{J_c}^T(oldsymbol{q})ig)^* oldsymbol{r}. \end{aligned}$$

Products

J1	Rocco Moccia, Cristina Iacono, Bruno Siciliano and Fanny Ficuciello, "Vision-based dynamic virtual fixtures for tools collision avoidance in robotic surgery". IEEE Robotics and Automation Letters. 2020 Jan 28;5(2):1650-5.
C1	Cristina Iacono, Sara Moccia, Aldo Marzullo, Elena De Momi, Umberto Bracale and Fanny Ficuciello, "Deep learning-based localization of the biliary tract in laparoscopic images acquired during surgical robotic procedures", Italian Institute of Robotics and Intelligent Machines (I-RIM) 3D 2021, October 8-9,2021

