

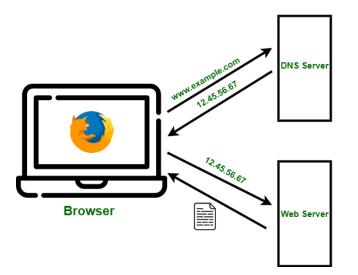
Antonia Affinito

Using DNS to understand user behavior over the Internet

Tutor: Alessio Botta

Cycle: XXXV

Year: Second



My background

- MSc degree in Computer Engineering, University of Naples "Federico II"
- Research group: COMICS with Prof. Alessio Botta
- PhD start date: Academic Year 2019-2020
- Scholarship type: MIUR research grant

The Domain Name System

- New domain names are registered every day, but 70% of them are malicious, sospicious or not safe to work
 [1]
- The DNS is typically used to establish a link between IoT botnets and their Command-and-Control server.

- Its role is to convert human-readable names (ex. example.com) in their corresponding IP addresses (93.184.21.34)
- It is considered the phonebook of the Internet

[1]: Z. Chen, J. Javier Wang, K. Kwan; Newly Registered Domains: Malicious Abuse by Bad Actors. Palo Alto Company

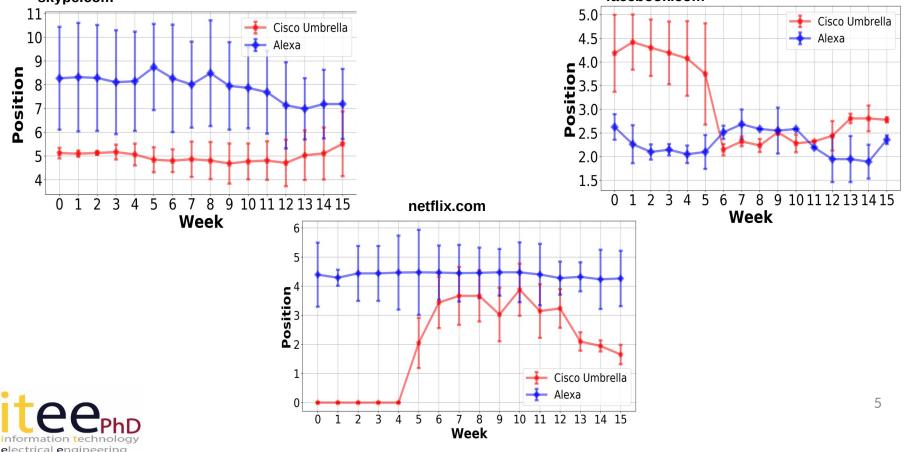
Antonia Affinito

Starting Ideas

- The DNS is considered a valid tool to analyse a lower percentage of traffic and to extract interesting information about the network operations.
- It is an important observation point in order to study the main issues of current networks, including performance and security.

Research Questions:

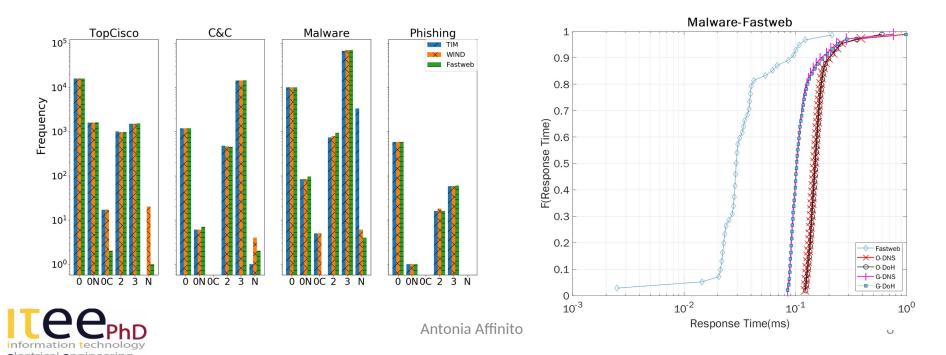
- Is it possible to look at the trend changes of the most popular apps with the DNS data?
- Which type of DNS resolver local or public has the best security/response time ratio?
- Is it possible to discriminate benign and malicious domains by looking at their lifetime and/or other features provided by the DNS?



Top 1 Million Lists: Pandemic Period

- We started from two lists of the most popular Top One Million domain names
 - Collected every day by Cisco Umbrella and Alexa
- Looking at the trends of the most popular applications, divided by categories, we derived how

facebook.com


their usage changed during the **COVID** pandemic period skype.com

DNS Resolvers – Local vs Public

We created a **dataset** performing queries on a large number of domain names to three Italian ISPs and two Public resolvers.

- We relied on the domain names provided by Cisco analysts, divided in three **malicious categories**: malware, phishing, command-and-control.
- We focused particularly on the **response time** and **response code**.
- We investigated the **performance** of the DNS resolvers Local and Public- in terms of capability to recognize malicious domains and the response time.

Lifetime of the Domain Names – Period Abroad

- I am currently spending my **period abroad** at the University of Twente (Netherlands) from April 2021 to March 2022, working on the lifetime of domain names.
- The **lifetime** of a domain is set to approximately 1-2 years for benign domains.
 - > The lifetime of a **malicious** domain name is shorter than that of a benign domain [1].
- Detection of the malicious domain names through their lifetime retrieved from the information in the **zone files**.

[1]: N. Hason; A. Dvir, C. Hajaj; Robust Malicious Domain Detection; Cyber Security Cryptography and Machine Learning.
 CSCML 2020

Third Year – Next Ideas

- The DNS traffic contains a significant amount of meaningful features useful to identify domain names associated with malicious activities.
- The **main objective** of the research project is to detect malicious domain names:
 - Analysing response times and codes of local and public DNS resolvers;
 - > Studying their lifetime;
 - Using features collected by OpenIntel and Certificate Transparency Logs applying supervised machine learning algorithms.

My Products

[P1]	Antonia Affinito, Alessio Botta, Luigi Gallo, Mauro Garofalo, Giorgio Ventre; "Spark-based Port and Net Scan Detection"; The 35th ACM/SIGAPP Symposium on Applied Computing- ACM SAC; published; 2020.					
[P2]	Antonia Affinito, Alessio Botta, Giorgio Ventre; "The impact of Covid on network utilization: an analysis on domain popularity"; IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks- CAMAD; online conference; published; 2020.					
[P3]	Antonia Affinito, Alessio Botta, Giorgio Ventre; "Local and Public DNS Resolvers: should we trade off performance against security?"; IEEE/IFIP Network Operations and Management Symposium; submitted; 2021.					

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	0	3.3	6	6	15.3
Bimonth 2	6	1.3	5	0	6.3
Bimonth 3	0	0.6	9	0	9.6
Bimonth 4	0	1.2	8	0	9.2
Bimonth 5	5	0	7.5	0	12.5
Bimonth 6	0	0.4	8	0	8.4
Total	11	6.8	43.5	6	61.3
Expected	30 - 70	10 - 30	80 - 140	0-4.8	

Thanks for the attention!

