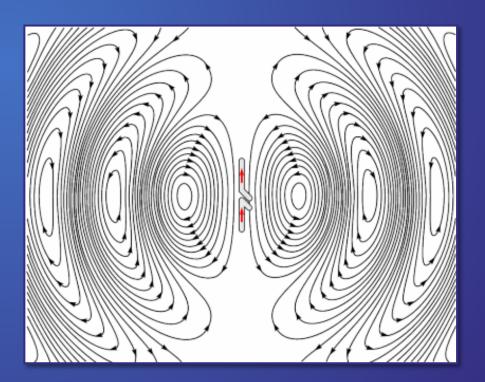


A NEW FRAMEWORK TO INVESTIGATE THE ROLE OF HIGH PERMITTIVITY MATERIALS IN MRI

Tutor: Giuseppe Ruello


PhD student:
Vincenzo Miranda

Cycle: XXXVIII Year: 2022/2023

SUMMARY

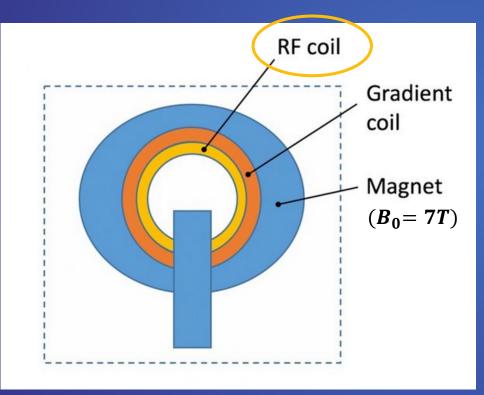
- My Background
- Research Field and Activities
- Results
- Future Developments

MY BACKGROUND

- MSc Degree: Biomedical Engineering, Medical Devices
- Research Laboratory: Numerical antenna laboratory, DIETI
- PhD start Date: 01/11/22
- Scholarship Type: PNRR DM 351 Public Administration

COLLABORATIONS

- Non ionizing radiation laboratory (NIR), Ettore Pancini Physics Department
- Department of Radiology, New York University (NYU)


SUMMARY OF STUDY ACTIVITIES

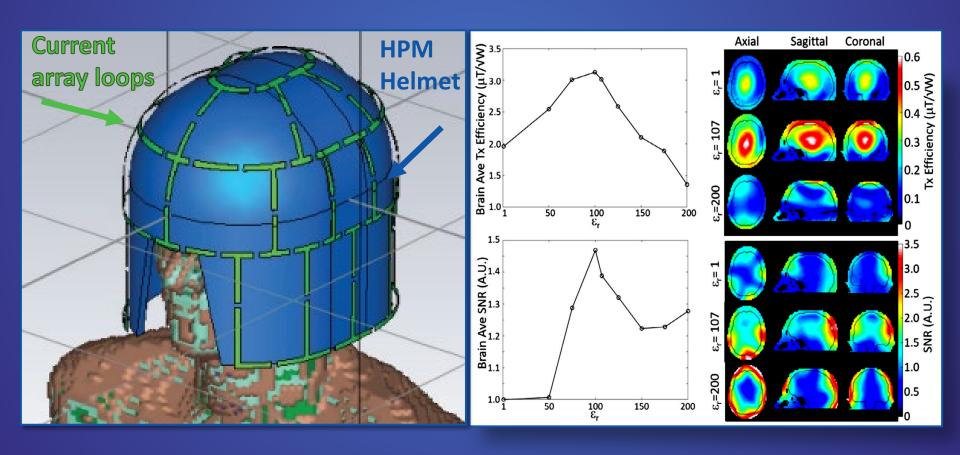
Ad hoc PhD courses/ schools	Courses from MSc curricula	Seminars
How to boost your PhD	Electrodynamics of continuos media	Insights into the Design of Transmit and Receive Coils for Ultra-High Field MRI
Statistical Data Analysis for Science and Engineering Research		Electromagnetic Characterisation of Coatings and Structured Surfaces for Particle Accelerators
Surface Electromagnetics Ph.D. school in Trento		Electric Regularized Maxwell Equations with Singularities ERMES software
Scientific Writing		Electroporation techniques
Corso formazione rischi specifici ingegneria		Electrophysiology techniques and High Density Mapping and RF Ablation using Carto
Antenna Modeling on Ansys Fundamentals and Hands-On Exercises		Algorithm Unrolling: Efficient, Interpretable Deep Learning for Signal and Image Processing
Formazione sulla progettazione europea (PON)		

RESEARCH FIELD

Electromagnetic efficiency and safety in ultra-high field magnetic resonance imaging

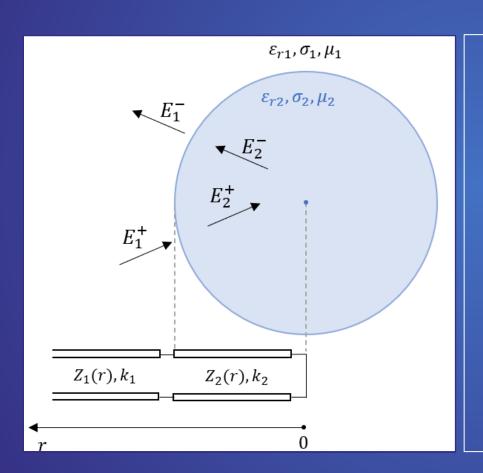
 Signal to noise ratio proportional to the static magnetic field

$$SNR \propto B_0$$


Resonance Larmor Frequency for RF coils

$$f_0 = \mathbf{\gamma} \mathbf{B_0}$$

Research Activity: Problem statement


What are High Permittivity Materials (HPMs) and how are they used?

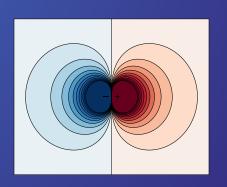
Research Activity: Metodology

New developed model based on Mie Theory

Fields Expression:

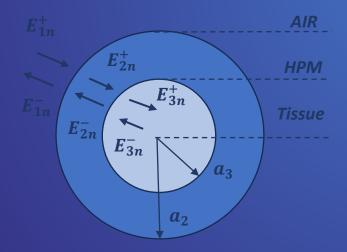
$$\boldsymbol{E}_{l}(r) = \sum_{n=1}^{\infty} \sum_{m=-n}^{n} E_{lnm}^{+} \boldsymbol{M}_{nm}^{(3)} + E_{lnm}^{-} \boldsymbol{M}_{nm}^{(4)}$$

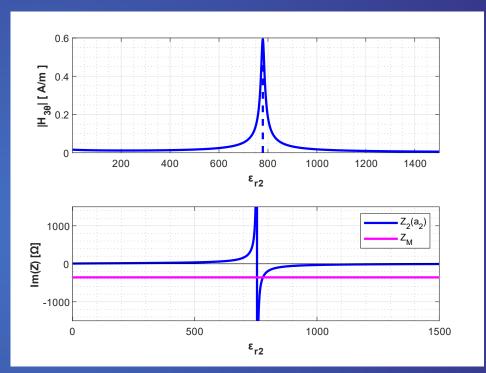
$$H_{l}(r) = \frac{k_{l}}{i\omega\mu_{l}} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} E_{lnm}^{+} N_{nm}^{(3)} + E_{lnm}^{-} N_{nm}^{(4)}$$


$$Z_n^{(1)}(k_l r) = \frac{i\omega\mu}{k_l} \frac{h_n^{(1)}(k_l r)}{h_n^{(1)'}(k_l r)}$$

$$\Gamma_n(k_l r) = \frac{E_l^- h_{nm}^{(2)}(k_l r)}{E_l^+ h_{nm}^{(1)}(k_l r)}$$

Research Activity: Results


- Analytical approach: implementation of the developed model with Matlab Software
- Numerical methods: simulations performed using Ansys HFSS
- Experimental work: Design, fabrication and characterization of solid phantoms to mimic the electrical properties of tissues



Simulations input Parameters:

- Frequency 297.2 MHz (7T)
- Tissue Radius 9 cm
- Tissue Relative Permittivity 50
- Tissue Conductivity 0 S/m
- HPM Radius 1.596 cm

Foundamental mode (n=1)

HPM relative Permittivity equal to 780 can amplify selectively the fundamental mode!

[A/m]

0.0820 0.0765

0.0711

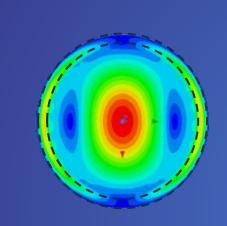
0.0601

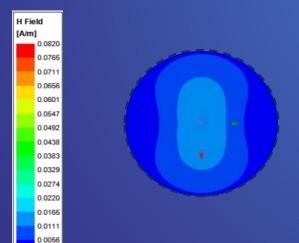
0.0547

0.0492 0.0438

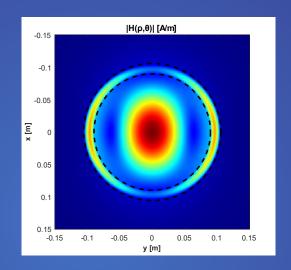
0.0383

0.0329 0.0274


0.0220 0.0165 0.0111


0.0056

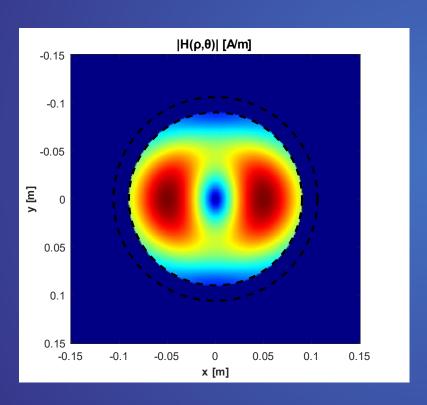
0.0002


0.0002

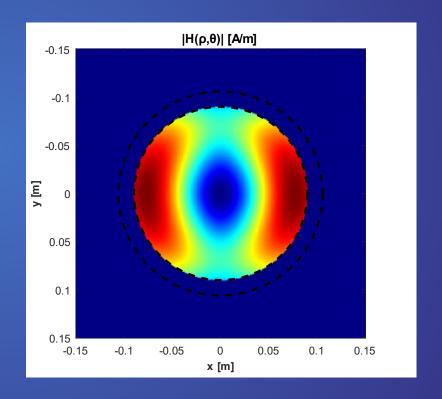
Numerical method

Analytical approach

WITH HPM SURROUNDING TISSUE


 $\overline{\varepsilon}_{HPM}$ = 780

WITHOUT HPM
SURROUNDING TISSUE



AMPLIFICATION OF SECOND MODE

 ε_{HPM} = 1060

AMPLIFICATION OF THIRD MODE $arepsilon_{HPM}$ = 1180

NIR Laboratory Activity: Design and realization of MRI Phantoms

Purpose: To realize a phantom for MRI applications in the case of a 7T scanner that simulates the dielectric properties of the brain.

$$f_0 = \gamma B_0 \cong 297.2 MHz$$
 $\gamma = 42,58 \frac{MHz}{T}$

Typical values of the average electrical properties of the brain at this frequency can be found in the literature:

$$\varepsilon \cong 50$$
 $\sigma \cong 0, 5 S/m$

Research Activity: Products

Conference paper

Title: A new physical framework to investigate scattering suppression from coated spheres.

Authors: Vincenzo Miranda, Daniele Riccio, Giuseppe Ruello, Riccardo Lattanzi

Status: Published

Conference Name: SPIE 12568, Metamaterials XIV, 125680N (6 June 2023)

• Conference paper

Title: An Analytical and Numerical Approach to Investigate the Role of High Permittivity Materials in Magnetic

Resonance Imaging

Authors: Giuseppe Carluccio, Christopher Collins, Riccardo Lattanzi, Vincenzo Miranda, Daniele Riccio, Giuseppe

Ruello

Status: Published

Conference: IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting

Journal paper

Title: A Theoretical Framework to Investigate the Effect of High Permittivity Materials in Magnetic Resonance Imaging

using Anatomy-Mimicking Cylinders

Authors: Vincenzo Miranda, Giuseppe Ruello, Riccardo Lattanzi

Status: Submitted

Journal: Magnetic Resonance in Medicine (MRM)

Next Year

- Implement new field sources with the developed model, such as circular coils arrays used in MRI.
- Study the case of a layered model that considers all head layer for accurate results.
- Apply the model to different scenarios to expand its use (such as scattering suppression)
- Produce phantoms in the shape of a real head to study the impact of geometry on the obtained results.
- Experimentally validate the developed model by exposing the phantoms in 7T magnetic resonance imaging scanner to acquire and process data.