

Carmine Cesarano Security Assessment and Hardening of Fog Computing Systems

Tutor: prof. Roberto Natella

Cycle: XXXVIII Year: First


My background

- MSc degree in Computer Engineering (June 2022)
 - Thesis: "Assessing Isolation Properties in Partitioning Hypervisors"
- Research group: Dependable and Secure Software Engineering and Real-Time Systems (DESSERT – www.dessert.unina.it)
- PhD start date: 1st November 2022
- Scholarship type: UNINA

Research field of interest

My research field concerns the security assessment and hardening of software stack employed in Fog Computing Systems

- Middleware Systems
- Operating Systems
- VirtualizationPlatforms
 - **IoT Frameworks**

Summary of study activities

Ad hoc PhD courses / schools:

- IoT Data Analysis
- Virtualization Technologies and their applications
- Statistical Data Analysis for Science and Engineering Research

Conferences / events attended

> IEEE International Symposium on Software Reliability Engineering (ISSRE2023), presenting author

Research activity: Overview

Problem (1):

OSS and OTS software need **security hardening** to be used in the context of Edge Computing

- Large attack surface
- Redundant code and unnecessary features
- Vast configuration space

Problem (2):

Communication mechanisms in Edge Computing (e.g., Firewalls, Application Level Gateways, APIs sandboxing) need **security assessment**

- Source code is not always available
- Heterogeneity in terms of architecture, technology stack, hardware devices

Research activity: Overview

Objective

Foster the adoption of edge computing architectures in security-critical and safety-critical domains.

Methodology (1):

- Definition of techniques to automatically identify the only necessary APIs
 reducing the attack surface
- Definition of techniques to selecting the only necessary code components and remove the remaining
- Definition of techniques to automatically explore the configuration space

Methodology (2):

Design a **generalizable** testing technique based on **virtualization** allowing for binary only testing and transparent test of secure communication mechanisms

Products

[P1]	Cesarano, C.; Cotroneo, D.; De Simone, L. Towards Assessing Isolation Properties in Partitioning Hypervisors 33rd IEEE International Symposium on Software Reliability Engineering (ISSRE2022)
[P2]	Cesarano, C.; Cinque, M.; Cotroneo, D.; De Simone, L.,; Farina, G. IRIS: a Record and Replay Framework to Enable Hardware-assisted Virtualization Fuzzing 53rd IEEE/IFIP International Conference on Dependable Systems and Networks (DSN2023)
[P3]	Cesarano, C.; Security Assessment and Hardening of Fog Computing Systems 34th IEEE International Symposium on Software Reliability Engineering (ISSRE2023)

Tutorship

«Software Security» course support and tutorship on:

- Basic Malware analysis laboratory (2.5 hours)
- Reverse engineering laboratory (2.5 hours)
- Windows Malware analysis laboratory (2.5 hours)

Thank you for your attention

